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Preface

This student study guide is designed to accompany the text A First Course in Complex Analysis with Appli-
cations, Second Edition (Jones and Bartlett Publishers, 2009) by Dennis G. Zill and Patrick D. Shanahan. It
consists of seven chapters which correspond to the seven chapters of the text. Each chapter has the following
features.

Review Topics

Many sections of the study guide are preceded by a review of selected topics from calculus and differential
equations that are required for that section. These reviews provide concise summaries of prerequisite no-
tation, terminology, and concepts. For additional review, students are encouraged to consult appropriate
mathematics texts. Two excellent sources that were used repeatedly for the review topics are Calculus:
Early Transcendentals, Fourth Edition (Jones and Bartlett Publishers, 2010) by Dennis G. Zill and Warren
S. Wright and Advanced Engineering Mathematics, Third Edition (Jones and Bartlett Publishers, 2006) by
Dennis G. Zill and Michael R. Cullen.

Summaries

A summary of every section of the text is provided. The summary reviews all of the key ideas of the section
including all terminology, formulas, theorems, and concepts. Figures with two colors are included to aid in
geometric understanding.

Exercises

Following the summary, complete solutions are given for every other odd exercise in the section (eg. problems
3, 7, 11, etc.). These are full solutions, supported by figures with two colors, that supply all of the pertinent
details of the problem and incorporate the same techniques and writing style used in the text. The solutions
also include references to equations, definitions, theorems, and figures in the text. The answer to each
problem is typeset in color for easy reference.

Focus on Concepts

The focus on concepts problems from the text consist of conceptual word, proof, and geometrical problems.
Since they are often used as topics for classroom discussion or independent study we have included detailed
hints rather than full solutions for these problems. As with the exercises, only every other odd problem is
included.

Final Note to Students

The most effective way to learn mathematics is to work many, many problems. You should not review
a solution in this study guide before first working or, at the very least, attempting to work the problem
yourself. Learning advanced mathematical topics takes significant time and effort. It may be quicker to look
at the solutions, then try to work problems, but ultimately this approach will not lead to an independent
understanding of concepts and problem solving strategies that are required for success.



Chapter 2

Complex Functions
and Mappings

2.1

2.1 Complex Functions

Review Topic: Functions

function: A function f from a set A to a set B is a rule that assigns to each element a ∈ A exactly one
element b ∈ B. The notation f : A→ B is used to denote a function from A to B.

values: If the element b ∈ B is assigned to the element a ∈ A by a function f : A → B, then we call b the
image of a under f , or the value of f at a. We write b = f(a) to indicate this assignment.

domain: If f : A→ B, then the set A is called the domain of f , written as Dom(f).

range: If f : A → B, then the set of all images in B is called the range of f , written as Range(f). Using
set notation the range is defined by

Range(f) = {f(a)
∣∣ a ∈ A}.

one-to-one If f : A→ B, then f is called one-to-one if every element in the range of f corresponds to exactly
one element in the domain of f . In other words, f is one-to-one if whenever a1 6= a2, then f(a1) 6= f(a2).

onto: If f : A→ B, then f is called onto if the range of f is equal to the entire set B. That is, f is onto if
for every b ∈ B there is some a ∈ A so that f(a) = b.

29



30 Chapter 2 Complex Functions and Mappings

2.1 Summary

complex function: A complex function, or a complex-valued function of a complex variable, is a function
whose domain and range are subsets of the set C. That is, if f : A→ B is a complex function, then we must
have A ⊆ C and B ⊆ C.

w = f(z): The notation w = f(z) is used to represent a complex-valued function of a complex variable,
while the notation y = f(x) is used to represent a real-valued function of a real variable.

Re(f) and Im(f): Given a complex function w = f(z), if we set z = x + iy and express the function in
terms of two real functions as:

f(z) = u(x, y) + iv(x, y),

then the functions u(x, y) and v(x, y) are called the real and imaginary parts of f , respectively. We use the
notation Re(f) = u(x, y) and Im(f) = v(x, y).

complex exponential function: The complex exponential function is defined by:

ez = ex cos y + iex sin y.

polar coordinates: Given a complex function w = f(z), we can replace the complex variable z with its
polar form z = r(cos θ + i sin θ) and express the function in terms of two real functions as:

f(z) = u(r, θ) + iv(r, θ).

We still call Re(f) = u(r, θ) and Im(f) = v(r, θ) the real and imaginary parts of f , but these real functions
are different from those obtained using Cartesian form x + iy of the complex variable z.

Exercises 2.1

3. (a) For z = 1 we have |z| = 1 and Arg(z) = 0. Therefore,

f(1) = loge 1 + i(0) = 0.

(b) For z = 4i we have |z| = 4 and Arg(z) = π
2 . Therefore,

f(4i) = loge 4 + i
π

2
≈ 1.38629 + 1.57080i.

(c) For z = 1 + i we have |z| =
√

2 and Arg(z) = π
4 . Therefore,

f(1 + i) = loge

√
2 + i

π

4
=

1
2

loge 2 + i
π

4
≈ 0.34657 + 0.78540i.

7. (a) For z = 3 we have r = |z| = 3 and θ = Arg(z) = 0. Therefore,

f(3) = 3 + i cos2 0 = 3 + i(1)2 = 3 + i.
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(b) For z = −2i we have r = |z| = 2 and θ = Arg(z) = −π
2 . Therefore,

f(−2i) = 2 + i cos2
(
−π

2

)
= 2 + i(0)2 = 2.

(c) For z = 2− i we have r = |z| =
√

5. Moreover, from equating the Cartesian and polar forms of the
point z = 2− i =

√
5(cos θ + i sin θ) we obtain cos θ = 2/

√
5. Therefore,

f(2− i) =
√

5 + i

(
2√
5

)2

=
√

5 +
4
5
i ≈ 2.23607 + 0.8i.

11. If we set z = x + iy, then

f(z) = (x + iy)3 − 2(x + iy) + 6
= x3 + 3x2yi + 3xy2i2 + y3i3 − 2x− 2yi + 6
= x3 + 3x2yi− 3xy2 − y3i− 2x− 2yi + 6
= (x3 − 3xy2 − 2x + 6) + (3x2y − y3 − 2y)i.

Therefore, Re(f) = x3 − 3xy2 − 2x + 6 and Im(f) = 3x2y − y3 − 2y.

15. If we set z = x + iy, then 2(x + iy) + i = 2x + (2y + 1)i. So, from (3) of Section 2.1 we have:

e2z+i = e2x+(2y+1)i

= e2x cos(2y + 1) + ie2x sin(2y + 1).

Therefore, Re(f) = e2x cos(2y + 1) and Im(f) = e2x sin(2y + 1).

19. If we set z = r(cos θ + i sin θ), then

f(z) =
[
r(cos θ + i sin θ)

]4
= r4(cos 4θ + i sin 4θ) ← see (9) in Section 1.3
= r4 cos 4θ + ir4 sin 4θ.

Therefore, Re(f) = r4 cos 4θ and Im(f) = r4 sin 4θ.

23. Since Re(z) and z2 are defined for all complex numbers, the natural domain of f(z) = 2Re(z)− iz2 is
the set C of all complex numbers.

Focus on Concepts

27. (a) Does arg(z) assign one and only one value to z?

(d) See part (a).
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31. In order to determine the natural domain consider the questions: For which values of x and y is
cos(x− y) defined? How about sin(x− y)? In order to determine the range, consider |f(z)|.

35. Verify that |e−z| = e−x, then use this identity to answer the question.

2.22.2 Complex Functions as Mappings

Review Topic: Parametric Curves

parametric curve: If f(t) and g(t) are real-valued functions of a real variable t, then the set C of all points
(f(t), g(t)), where a ≤ t ≤ b, is called a parametric curve. The equations x = f(t) and y = g(t) are called
parametric equations for C, and the variable t is called the parameter.

eliminating the parameter: Given a set of parametric equations x = f(t), y = g(t) it is sometimes
possible to eliminate the parameter t to obtain a single Cartesian equation of the curve. For example, if
the parametric equations x = t2 − t + 2, y = −t2 + t for a curve C are added together we obtain the single
equation x + y = 2 (so, the curve C defined by these equations is a line).

smooth curves: A parametric curve given by x = f(t), y = g(t), a ≤ t ≤ b is called smooth if f ′ and g′

are continuous on [a, b] and not simultaneously zero on (a, b). A piecewise smooth curve consists of a finite
number of smooth curves joined end to end.

tangent lines: If C is a parametric curve given by x = x(t), y = y(t), a ≤ t ≤ b and if both f(t) and g(t)
are differentiable on (a, b), then the slope of the tangent line to C at (f(t), g(t)) is given by

dy

dx
=

g′(t)
f ′(t)

provided f ′(t) 6= 0.

2.2 Summary

complex mapping: The term complex mapping is used to refer to the correspondence determined by a
complex function w = f(z) between points in the z-plane and their images in the w-plane.

image of S under f : If S is a set and f(z) is a complex function, then the image of S under f is the set
S′ consisting of the images under the mapping w = f(z) of all of the points in S.

geometric representation: A geometric representation of a complex mapping consists of a set S shown in
one copy of the complex plane and the image S′ of S under f shown in a second copy of the complex plane.
See below.
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x

y

S
w = f(z)

-

u

v

S’

complex parametric curves: If x(t) and y(t) are real-valued functions of a real parameter t, then the
set C consisting of all points z(t) = x(t) + iy(t), a ≤ t ≤ b is called a complex parametric curve. The
complex-valued function of the real variable t, z(t) = x(t) + iy(t) is called a parametrization of C.

commonly used parametrizations: The following parametrizations are commonly used to help describe
complex mappings.

line line segment ray circle

x

y

z1

z0

x

y

z0

z1

x

y

z1

z0

x

y

z0

r

z(t) = z0(1− t) + z1t, z(t) = z0(1− t) + z1t, z(t) = z0(1− t) + z1t, z(t) = z0 + reit,
−∞ < t <∞ 0 ≤ t ≤ 1 0 ≤ t <∞ 0 ≤ t ≤ 2π

image of a parametric curve: If w = f(z) is a complex mapping and if C is a curve parametrized by
z(t), a ≤ t ≤ b, then w(t) = f(z(t)), a ≤ t ≤ b is a parametrization of the image, C ′, of C under w = f(z).

Exercises 2.2

3. The half-plane S can be described by the two simultaneous inequalities

−∞ < x <∞ and y > 2. (1)

After replacing z by x + iy in the mapping w = 3z, we obtain w = 3(x + iy) = 3x + 3yi, and so the
real and imaginary parts of the mapping w = 3z are

u = 3x and v = 3y. (2)
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The image S′ of S under w = 3z is found by using the equations in (2) to transform the bounds on x
and y in (1) into bounds on u and v. If we substitute x = u/3 and y = v/3 in (1) and simplify, then
we find that S′ is given by

−∞ < u <∞ and v > 6.

Therefore, S′ is the half-plane Im(w) > 6. The mapping is depicted below.

x

y

S

2

w = 3z
-

u

v

S’

6

7. The half-plane S can be described by the two simultaneous inequalities

−∞ < x <∞ and y ≤ 1. (3)

After replacing z by x + iy in the mapping w = iz + 4, we obtain w = i(x + iy) + 4 = (4− y) + ix, and
so the real and imaginary parts of the mapping w = iz + 4 are

u = 4− y and v = x. (4)

The image S′ of S under w = iz + 4 is found by using the equations in (4) to transform the bounds on
x and y in (3) into bounds on u and v. If we substitute x = v and y = 4− u in (3) and simplify, then
we find that S′ is given by

u ≥ 3 and −∞ < v <∞.

Therefore, S′ is the half-plane Re(w) ≥ 3. The mapping is depicted below.

x

y

S

1

w = iz + 4
- u

v

S’

3

11. The line x = 0 can be described by

x = 0 and −∞ < y <∞. (5)

From (1) of Section 2.1, the real and imaginary parts of w = z2 are

u = x2 − y2 and v = 2xy. (6)
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For any point z = 0 + iy on the line x = 0, the equations describing the image in (6) become

u = −y2 and v = 0. (7)

Since −∞ < y < ∞ from (5), we have 0 ≤ y2 < ∞, and consequently, −∞ < u ≤ 0 from the first
equation in (7). Therefore, the image C ′ of the line x = 0 under w = z2 is the ray

−∞ < u ≤ 0 and v = 0.

The mapping is depicted below.

x

y

C

w = z2

- u

v

C’

15. (a) With the identifications z0 = 2 and z1 = i in parametrization (7) of Section 2.2, we see that the
parametric curve C is the line segment from 2 to i.

(b) Using z(t) = 2(1− t) + it and f(z) = 3z, the image of the parametric curve C is given by (11) of
Section 2.2:

w(t) = f(z(t))
= 3 (2(1− t) + it)
= 6(1− t) + 3it.

Therefore, a parametrization of the image C ′ is w(t) = 6(1− t) + 3it, 0 ≤ t ≤ 1.

(c) With the identifications z0 = 6 and z1 = 3i in parametrization (7) of Section 2.2, we see that the
parametric curve C ′ is the line segment from 6 to 3i. Plots for parts (a) and (c) are shown below.
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19. (a) Replacing the parameter t in z(t) with a new parameter 2s we obtain a different parametrization
of C, Z(s) = 2s, 0 ≤ s ≤ 1. Thus, with the identifications z0 = 0 and z1 = 2 in parametrization (7) of
Section 2.2, we see that the parametric curve C is the line segment from 0 to 2.
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(b) Using z(t) = t and f(z) = eiπz, the image of the parametric curve C is given by (11) of Section 2.2,
w(t) = f(z(t) = eiπt, 0 ≤ t ≤ 2. Therefore, a parametrization of the image C ′ is w(t) = eiπt, 0 ≤ t ≤ 2.

(c) Replacing the parameter t in w(t) with a new parameter s/π we obtain a different parametrization
of C ′, W (s) = eis, 0 ≤ s ≤ 2π. Now with the identifications z0 = 0 and r = 1 in parametrization (10)
of Section 2.2, we see that the parametric curve C ′ is the unit circle. Plots for parts (a) and (c) are
shown below.
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23. The circle |z| = 2 has center z0 = 0 and radius r = 2. Thus, from (10) of Section 2.2, a parametrization
of C is z(t) = 2eit, 0 ≤ t ≤ 2π. The image of C under f(z) = 1/z is given by (11) of Section 2.2:

w(t) = f(z(t))

=
1

2eit

=
1
2
e−it.

Replacing the parameter t in w(t) with a new parameter −s we obtain a different parametrization of
C ′, W (s) = 1

2eis, −2π ≤ s ≤ 0. Now with the identifications z0 = 0 and r = 1
2 in parametrization

(10) of Section 2.2, we see that C ′ is a circle centeblue at 0 with radius 1/2. That is, C ′ is the circle
|w| = 1

2 .

Focus on Concepts

27. (a) Set z = 1 + iy and then write 1/z in the form u + iv.

(b) Substitute the expressions for u and v from part (a) into the equation (u − 1
2 )2 + v2 = 1

4 and
simplify to confirm that the equation is an identity.

(c) Use the general equation of a circle.

(d) The point u+ iv = 0+ i0 does satisfy the equation (u− 1
2 )2 + v2 = 1

4 . But can this point be given
by an appropriate choice of y in the expressions for u and v from part (a)?

31. Consider the geometric relationship between a point x + iy and its conjugate x− iy.
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2.32.3 Linear Mappings

Review Topic: Composition

composition: Let f and g be functions. The composition of f and g is the function

(f ◦ g)(z) = f(g(z)).

Notice that in order for f ◦ g to be defined at z, the value of g(z) must be in the domain of f . In other
words, the domain of f ◦ g is the subset of those z in the domain of g for which g(z) is in the domain of f .

order: In general (f ◦ g)(z) 6= (g ◦ f)(z). For example, if f(z) = z2 and g(z) = z + i, then (f ◦ g)(z) =
(z + i)2 = z2 + 2iz − 1 but (g ◦ f)(z) = z2 + i.

2.3 Summary

complex linear function: A complex linear function is a function of the form f(z) = az + b where a and
b are any complex constants.

translation/rotation/magnification: There are three special types of linear functions: a translation, a
rotation, and a magnification. These functions are described below.

translation rotation magnification

T (z) = z + b, b 6= 0 R(z) = az, |a| = 1 M(z) = az, a > 0

THzL

z

b

RHzL

z

Θ

MHzL

z

ÈzÈ aÈzÈ

translates the point z along rotates the point z through magnifies the modulus of the
the vector b an angle of θ = Arg(a) point z by a factor of a

radians about the origin

linear mapping as a composition: If f(z) = az + b is a complex linear mapping and a 6= 0, then we can
express f as:

f(z) =
∣∣a∣∣ (

a

|a|
z

)
+ b.

This means that f(z) is the composition f(z) = (T ◦M ◦R) (z) where R(z) = a
|a|z is rotation by Arg(a),

M(z) = |a|z is magnification by |a|, and T (z) = z + b is translation by b.
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image of a point under a linear mapping: If f(z) = az + b is a complex linear mapping with a 6= 0,
and if w0 = f(z0) is plotted in the same copy of the complex plane as z0, then w0 is the point obtained by

(i) rotating z0 through angle Arg(a) about the origin,

(ii) magnifying the result by
∣∣a∣∣, and

(iii) translating the result by b.

geometry of linear mappings: Because a non-constant linear mapping is a composition of a rotation,
a magnification, and a translation, the image of a geometric figure can have a different size, but its basic
shape is the same. For example, the image of a circle is a circle, the image of a 5-sided polygon is a 5-sided
polygon, etc.

Exercises 2.3

3. (a) Using (6) of Section 2.3, we express the linear mapping f(z) = 3iz as

f(z) =
∣∣3i

∣∣ (
3i

|3i|
z

)
= 3

(
iz

)
+ 0.

Thus, the image of the closed disk |z| ≤ 1 is found by

(i) rotating the disk by Arg(i) = π,

(ii) magnifying the result by |3i| = 3, and

(iii) translating the result by 0 (no translation).

Under the rotation (i), the disk is mapped onto itself and under the magnification (ii) the result is
mapped onto a disk centered at the origin with radius 3. Therefore, the image is the closed disk |w| ≤ 3.

(b)

1

A w = iz-

1

A’ w = 3z-

3

A’’

7. (a) Using (6) of Section 2.3, we express the linear mapping f(z) = z + 2i as

f(z) =
∣∣1∣∣ (

1
|1|

z

)
+ 2i = 1

(
1z

)
+ 2i.

Thus, the image of the triangle is found by
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(i) rotating the disk by Arg(1) = 0 (no rotation),

(ii) magnifying the result by |1| = 1 (no magnification), and

(iii) translating the result by 2i.

Under the translation (iii), the vertices 0, 1, and i are mapped to 2i, 1 + 2i, and 3i, respectively.
Therefore, the image is the triangle with vertices 2i, 1 + 2i, and 3i.

(b)

A B

C

A’ B’

C’

11. (a) Using (6) of Section 2.3, we express the linear mapping f(z) = −3z + i as

f(z) =
∣∣− 3

∣∣ (
−3
| − 3|

z

)
+ i = 3

(
− 1z

)
+ i.

Thus, the image of the triangle is found by

(i) rotating the disk by Arg(−1) = π,

(ii) magnifying the result by | − 3| = 3, and

(iii) translating the result by i.

Under the rotation (i), the vertices 0, 1, and i are mapped to 0, −1, and −i, respectively. Under
the magnification (ii), these vertices are then mapped to 0, −3, and −3i. Finally, these vertices are
mapped to i, −3 + i, and −2i under the translation (iii). Therefore, the image is the triangle with
vertices i, −3 + i, and −2i.

(b)

A B

C

B’

C’

AB

C

B’

C’

AB

C

A’B’

C’

rotate by π magnify by 3 translate by i



40 Chapter 2 Complex Functions and Mappings

15. Using (6) of Section 2.3, we express the linear mapping f(z) = − 1
2z + 1−

√
3i as

f(z) =
∣∣∣∣−1

2

∣∣∣∣ (
−1/2
| − 1/2|

z

)
+ 1−

√
3i =

1
2
(
− 1z

)
+ 1−

√
3i.

Thus, the image of the triangle is found by

(i) rotating the disk by Arg(−1) = π,

(ii) magnifying the result by
∣∣− 1

2

∣∣ = 1
2 , and

(iii) translating the result by 1−
√

3i.

19. There are many ways to map the imaginary axis onto the line containing i and 1 + 2i. One ap-
proach consists of first rotating the imaginary axis onto the line y = x, then translating this line 1
unit in the y-direction. In other words, one solution to the problem is a linear mapping that consists
of a rotation clockwise through π/4 radians followed by a translation by i. This gives f(z) = e−πi/4z+i.

23. (a) Using z(t) = z0(1 − t) + z1t and T (z) = z + b, the image of the line segment is given by (11) of
Section 2.2:

w(t) = T (z(t))
= z0(1− t) + z1t + b

= z0(1− t) + z1t + b(1− t) + bt

= (z0 + b)(1− t) + (z1 + b)t.

Therefore, a parametrization of the image is w(t) = (z0 + b)(1 − t) + (z1 + b)t, 0 ≤ t ≤ 1. From
parametrization (7) of Section 2.2, we see that the image is a line segment from z0 + b to z1 + b.

(b) Using z(t) = z0(1− t) + z1t and R(z) = az, |a| = 1, the image of the line segment is given by (11)
of Section 2.2:

w(t) = R(z(t))
= a (z0(1− t) + z1t)
= (az0)(1− t) + (az1)t.

Therefore, a parametrization of the image is w(t) = (az0)(1−t)+(az1)t, 0 ≤ t ≤ 1. From parametriza-
tion (7) of Section 2.2, we see that the image is a line segment from az0 to az1. Since |a| = 1, the
endpoints az0 and az1 of the image line segment are obtained by rotating the points z0 and z1, respec-
tively, though an angle of Arg(a) about the origin.

(c) Using z(t) = z0(1− t) + z1t and M(z) = az, a > 0, the image of the line segment is given by (11)
of Section 2.2:

w(t) = M(z(t))
= a (z0(1− t) + z1t)
= (az0)(1− t) + (az1)t.

Therefore, a parametrization of the image is w(t) = (az0)(1−t)+(az1)t, 0 ≤ t ≤ 1. From parametriza-
tion (7) of Section 2.2, we see that the image is a line segment from az0 to az1. Since a > 0, the
endpoints az0 and az1 of the image line segment are obtained by magnifying the points z0 and z1,
respectively, by a factor of a.
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Focus on Concepts

27. (a) Given translations T1(z) = z + b1 and T2(z) = z + b2, their composition is

T1 ◦ T2(z) = T1(z + b2) = (z + b2) + b1 = z + (b1 + b2).

If we set b = b1 + b2, then the composition can be written as T1 ◦ T2(z) = z + b. Therefore, T1 ◦ T2 is a
translation if b1 + b2 6= 0 and the identity if b1 + b2 = 0. Since T2 ◦ T1(z) = z + (b1 + b2), the order of
composition does not matter.

(b) Modify the argument in part (a).

(c) Modify the argument in part (a).

31. Let f(z) = az + b for some complex constants a and b. Consider the identity |z| = |az + b| for the
values z = 0 and z = 1. What do the two resulting equations tell you about the coefficients a and b,
and, consequently, the linear mapping w = f(z)?

35. (a) Solve the system of equations:

az1 + b = w1

az2 + b = w2

for a and b.

(b) Consider f1 a rotation and f2 a magnification. What is the image of z = 0?

39. (a) Rotate, magnify, and translate the annulus in order to determine its image, then determine the
least and greatest distance a point in the image can be from the origin.

(b) Determine the points in the original annulus that map onto the points that are closest and farthest
from the origin identified in part (a).

(c) Notice that the closer a point f(z) is to the origin, the farther 1/f(z) is from the origin and the
farther f(z) is from the origin, the closer 1/f(z) is to the origin.

2.4

2.4 Special Power Functions

Review Topic: Inverse Functions

one-to-one functions: A function f is one-to-one if whenever f(a1) = f(a2), then a1 = a2. In other
words, f is one-to-one if whenever a1 6= a2, then f(a1) 6= f(a2). Put yet another way, f is one-to-one if
every element b in the range of f corresponds to exactly one element a in the domain of f .
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inverse function: If f is a one-to-one function with domain A and range B, then the inverse function f−1

is the function with domain B and range A defined by f−1(b) = a if f(a) = b.

composition properties of inverse functions: If f is a one-to-one function with domain A and range B
and if f−1 is its inverse, then(

f ◦ f−1
)
(b) = f

(
f−1(b)

)
= b for all b in B, and(

f−1 ◦ f
)
(a) = f−1 (f(a)) = a for all a in A.

inverse mappings: If a one-to-one function f maps a set S onto a set T , then the inverse function f−1

maps the set T onto the set S.

finding inverses algebraically: In order to find the inverse of a one-to-one function f algebraically we
solve the equation f(a) = b for the independent variable a, then relabel the independent and dependent
variables appropriately. For example, the complex function f(z) = 5z − 2i is one-to-one. If we solve the
equation w = 5z − 2i for the independent variable z we obtain z = (w + 2i)/5. Relabeling the independent
and dependent variables gives the inverse function f−1(z) = (z + 2i)/5.

restricting domains: If f is a function that is not one-to-one, then it does not have an inverse function.
However, it may be possible to restrict the domain of f to a subset on which f is one-to-one and, consequently,
use the restricted domain to determine an inverse function. For example, the real function f(x) = x2 is not
one-to-one on its natural domain (−∞,∞). The function f(x) = x2 is one-to-one, however, on the restricted
domain [0,∞). On this restricted domain we have the inverse function f−1(x) =

√
x.

2.4 Summary

complex polynomial function: A complex polynomial function is a function of the form

p(z) = anzn + an−1z
n−1 + ... + a1z + a0

where n is a positive integer and an, an−1, ... a1, and a0 are complex constants. If an 6= 0, then n is called
the degree of the polynomial p(z).

complex power functions: A complex power function is a function of the form f(z) = zα where α is a
complex constant.

complex squaring function f(z) = z2: The complex squaring function f(z) = z2 can be expressed in
terms of it real and imaginary parts using either a Cartesian, polar, or exponential form of the variable z.
Each is given below:

Cartesian polar exponential

f(z) = z2 =
︷ ︸︸ ︷
(x2 − y2) + 2xyi =

︷ ︸︸ ︷
r2(cos 2θ + i sin 2θ) =

︷ ︸︸ ︷
r2ei2θ

the mapping w = z2: As a mapping, w = z2 squares the modulus of a point and doubles its argument.
The following summarizes some properties of the mapping w = z2
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x

y

Θ

ray arg(z) = θ

w = z2

-
u

v

2Θ

ray arg(w) = 2θ

x

y

r

Θ

Φ

circular segment |z| = r,
φ ≤ arg(z) ≤ θ

w = z2

-

u

v

r2

2Θ

2Φ

circular segment |w| = r2,
2φ ≤ arg(w) ≤ 2θ

x

y

k

vertical line Re(z) = k

w = z2

-
u

v

k2

parabola u = k2 − v2/(4k2)
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x

y

k

horizontal line Im(z) = k

w = z2

-
u

v

-k2

parabola u = v2/(4k2)− k2

the mapping w = zn: As a mapping, w = zn = rneinθ raises the modulus of a point to the nth power and
increases its argument by a factor of n. The following summarizes some properties of the mapping w = zn

x

y

Θ

ray arg(z) = θ

w = zn

-
u

v

n Θ

ray arg(w) = nθ

x

y

r

Θ

Φ

circular segment |z| = r,
φ ≤ arg(z) ≤ θ

w = zn

-

u

v

rn

n Θ

n Φ

circular segment |w| = rn,
nφ ≤ arg(w) ≤ nθ

principal square root function z1/2: The principal square root function is defined by

z1/2 =
√
|z| eiArg(z)/2

=
√

reiθ/2, θ = Arg(z).
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If the domain of f(z) = z2 is restricted to the set −π/2 < arg(z) ≤ π/2, then f is one-to-one and the
principal square root function is the inverse of the function f(z) = z2 on this restricted domain.

principal nth root function z1/n: For integers n ≥ 2, the principal nth root function is defined by

z1/n = n
√
|z| eiArg(z)/n

= n
√

reiθ/n, θ = Arg(z).

If the domain of f(z) = zn is restricted to the set −π/n < arg(z) ≤ π/n, then f is one-to-one and the
principal square root function is the inverse of the function f(z) = zn on this restricted domain.

multiple-valued functions: A rule F that assigns a set of one or more complex numbers to each complex
number in a subset of C is called a multiple-valued function. For example, G(z) = arg(z) is a multiple-
valued function that assigns an infinite set of numbers (all differing by a multiple of 2π) to a nonzero complex
number z. Multiple-valued functions are not functions (as defined in Section 2.1).

Exercises 2.4.1

3. By identifying k = 3 in equation (3) of Section 2.4.1 we see that the image of the line x = 3 under the
mapping w = z2 is the parabola u = 9− v2/36.

7. Notice that the positive imaginary axis is the ray arg(z) = π/2. From the 2.4 Summary, the image
of this ray is a ray making an angle of 2(π/2) = π radians with the positive real axis. Therefore, the
image is the ray arg(w) = π, the negative real aixs.

11. The triangle with vertices 0, 1, and 1+i consists of three line segments. We treat each of these segments
separately. The first segment from 0 to 1 lies in the ray arg(z) = 0. So, by the discussion on pages
73-74 of Section 2.4, its image under w = z2 lies in the ray arg(w) = 2 · 0 = 0. Since the endpoints
z = 0 and z = 1 map to w = 0 and w = 1, respectively, the image is the line segment from 0 to 1.
Similarly, the line segment from 0 to 1 + i lies in the ray arg(z) = π

4 and so its image lies in the ray
arg(w) = 2 · π

4 = π
2 . Since the endpoints z = 0 and z = 1 + i map to w = 0 and w = 2i, respectively,

the image is the line segment from 0 to 2i. The last line segment from 1 to 1 + i lies in the vertical
line x = 1, not a ray emanating from the origin, thus its image will lie in a parabola. Identifying k = 1
in equation (3) of Section 2.4.1 we see that the image will lie in the parabola u = 1− v2/4. Since the
endpoints z = 1 and z = 1 + i map to w = 1 (v = 0) and w = 2i (v = 2), respectively, the image of
this last line segment is the parabolic arc u = 1 − v2/4, 0 ≤ v ≤ 2. Therefore, the image consists of
the line segment from 0 to 1, line segment from 0 to 2i, and parabolic arc u = 1 − v2/4, 0 ≤ v ≤ 2.
The mapping is depicted in the figure below.

x

y

1+i

10

w = z2

-

u

v

2i

10
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15. The function f(z) = 2z2 + 1 − i can be expressed as a composition f(z) = (h ◦ g)(z) of the linear
function h(z) = 2z + 1 − i and the squaring function g(z) = z2. Under the squaring function, the
ray arg(z) = π/3 is mapped onto the ray arg(w) = 2π/3. Next we consider the action of the linear
function on this image. By (6) of Section 2.3, the linear mapping h(z) = 2z + 1 − i consists of a
rotation by Arg(2/|2|) = 0 (no rotation), followed by a magnification by |2| = 2, and a translation by
1 − i. The ray arg(w) = 2π/3 is mapped onto itself by the magnification. After the translation by
1 − i, the image is a ray emanating from 1 − i making an angle of 2π/3 with the line y = 1. Since 0
is not in the set arg(z) = π/3, the point f(0) = 1− i is not included in the image. Therefore, the im-
age can be described as the ray emanating from 1−i and containing (

√
3−1)i excluding the point 1−i.

19. The function f(z) = 1
4eiπ/4z2 can be expressed as a composition f(z) = (h◦g)(z) of the linear function

h(z) = 1
4eiπ/4z and the squaring function g(z) = z2. Because the squaring function squares moduli and

doubles arguments, the circular arc |z| = 2, 0 ≤ arg(z) ≤ π/2 is mapped onto the circular arc |w| = 4,
0 ≤ arg(w) ≤ π. Next we consider the action of the linear function on this image. By (6) of Section 2.3,
the linear mapping h(z) = 1

4eiπ/4z consists of a rotation by π/4, followed by a magnification by 1/4,
and a translation by 0 (no translation). Under the rotation, the circular arc |w| = 4, 0 ≤ arg(w) ≤ π
maps onto the circular arc |w| = 4, π/4 ≤ arg(w) ≤ 5π/4. Finally, under the magnification, this image
is mapped onto the circular arc |w| = 1, π/4 ≤ arg(w) ≤ 5π/4. Therefore, the image is the circular
arc |w| = 1, π/4 ≤ arg(w) ≤ 5π/4.

23. (a) Since the function f(z) = z2 squares the modulus and doubles the argument, the image of the
region 1 ≤ |z| ≤ 2, π/4 ≤ arg(z) ≤ 3π/4 is the region 1 ≤ |w| ≤ 4, π/2 ≤ arg(w) ≤ 3π/2.

(b) Since the function f(z) = z3 cubes the modulus and triples the argument, the image of the region
1 ≤ |z| ≤ 2, π/4 ≤ arg(z) ≤ 3π/4 is the region 1 ≤ |w| ≤ 8, 3π/4 ≤ arg(w) ≤ 9π/4.

(c) Since the function f(z) = z4 raises the modulus to the 4th power and quadruples the argument,
the image of the region 1 ≤ |z| ≤ 2, π/4 ≤ arg(z) ≤ 3π/4 is the region 1 ≤ |w| ≤ 16, π ≤ arg(w) ≤ 3π.
That is, the image is the annulus 1 ≤ |w| ≤ 16.

Exercises 2.4.2

27. From (14) of Section 2.4.2, since | − 1| = 1 and Arg(−1) = π, we have that

(−1)1/3 = 3
√

1eiπ/3 =
1
2

+
√

3
2

i.

31. Since the principal square root function takes the square root of the modulus and halves the argument,
the image of the ray arg(z) = π/4 is the ray arg(w) = π/8.

35. Since the principal square root function takes the square root of the modulus and halves the ar-
gument, the image of the circular arc |z| = 9, −π/2 ≤ arg(z) ≤ π is the circular arc |w| = 3,
−π/4 ≤ arg(w) ≤ π/2.
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39. We consider the image of the boundary of the region first. The boundary of the region lies in the union
of the ray arg(z) = π/2 and the parabola x = 4− 1

16y2. Since the principal square root function takes
the square root of the modulus and halves the argument, the image of the ray arg(z) = π/2 is the ray
arg(w) = π/4. In order to determine the image of the parabola we use the fact that f(z) = z1/2 is the
inverse function of f(z) = z2 defined on the restricted domain −π/2 < arg(z) ≤ π/2. By (3) of Section
2.4.1 with the identification k2 = 4, the image of the lines x = ±2 map onto the parabola u = 4− 1

16v2

under w = z2. Only the line x = 2 is in the restricted domain of f(z) = z2, and so we conclude that
the image of the parabola x = 4− 1

16y2 under w = z1/2 is the vertical line u = 2. Thus, the image is
bounded by the ray arg(w) = π/4 (or, equivalently, the line u = v) and the line u = 2. Since the point
−7 + 24i is in the region and (−7 + 24i)1/2 = 3 + 4i, the image of the region must be the set bounded
by the lines u = v and u = 2 containing the point 3 + 4i.

Focus on Concepts

43. Use the fact that arg(w) = π/2 and arg(w) = −3π/2 are the same ray.

47. Consider different subarcs of the circle |z| =
√

2.

51. Remember that the range of the principal nth root function is −π

n
< arg(w) ≤ π

n
.

55. The mapping w = 2iz2 − i is a composition of the mappings w = z2 and w = 2iz − i. First, find
the image of the quarter disk S under the mapping w = z2. Second, determine the image of this set
under the linear mapping w = 2iz− i. The point in the image of this composition that is farthest from
the origin realizes the maximum modulus M and the point closest to the origin realizes the minimum
modulus L.

2.5

2.5 Reciprocal Function

2.5 Summary

reciprocal function: The function f(z) = 1/z is called the reciprocal function.

inversion in the unit circle: The mapping

g(z) =
1
z

=
1
r
eiθ

is called inversion in the unit circle. Under inversion in the unit circle a point z and its image w = g(z)
have the same argument but the modulus of z and w are reciprocals of each other. Therefore, if z0 6= 0,
then w0 = 1/z0 is the unique point on the ray arg(z) = arg(z0) with modulus |w0| = 1/|z0|.
complex conjugation: The function

c(z) = z = re−iθ
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is called the complex conjugation function. As a mapping, complex conjugation is a reflection across
the real axis. Therefore, given z0, w0 = z0 is the unique point with the same modulus as z0 and
arg(w0) = − arg(z0).

reciprocal mapping: The complex reciprocal function f(z) = 1/z can be written as the composition

f(z) =
1
z

=
1

reiθ
=

1
r
e−iθ =

(
1
r
eiθ

)
= c(g(z))

where g(z) = 1
r eiθ is inversion in the unit circle and c(z) = z is complex conjugation. Therefore, if

z0 6= 0, then w0 = 1/z0 is the point obtained by

(i) inverting z0 in the unit circle, then

(ii) reflecting the result across the real axis.

1/z on the extended complex plane: The reciprocal function on the extended complex plane is
defined by

f(z) =

 1/z, if z 6= 0 or ∞
∞, if z = 0
0, if z =∞.

mapping properties of w = 1/z: The following summarizes some properties of the mapping w =
1/z.

x

y

k

vertical line x = k

w = 1/z
-

u

v

1
k

circle
∣∣w − 1

2k

∣∣ =
∣∣ 1
2k

∣∣

x

y

k

horizontal line y = k

w = 1/z
-

u

v

-1
k

circle
∣∣w + 1

2k i
∣∣ =

∣∣ 1
2k

∣∣
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u

v

k

circle
∣∣z − k

2

∣∣ =
∣∣k
2

∣∣

w = 1/z
-

x

y

1
k

vertical line u = 1/k

u

v

-k

circle
∣∣z + k

2 i
∣∣ =

∣∣k
2

∣∣

w = 1/z-
x

y

1
k

horizontal line v = 1/k

Exercises 2.5

3. In order to find the image of the set |z| = 3, −π/4 ≤ arg(z) ≤ 3π/4 under the mapping w = 1/z, we
first invert this set in the unit circle, then reflect the result across the real axis. Under inversion in the
unit circle, points with modulus 3 have images with modulus 1/3, and the arguments are unchanged.
Hence, the image under inversion in the unit circle is the set |w| = 1/3, −π/4 ≤ arg(w) ≤ 3π/4.
Reflecting this set across the real axis negates arguments and does not change the modulus. Therefore,
the image is the semicircle |w| = 1/3, −3π/4 ≤ arg(w) ≤ π/4.

7. In order to find the image of the set arg(z) = π/4 under the mapping w = 1/z, we first invert this set
in the unit circle, then reflect the result across the real axis. If we set z = reiθ, then this set is given
by 0 < r, θ = π/4. Under inversion in the unit circle, points with modulus r > 0 have images with
modulus 1/r > 0, , and the arguments are unchanged. Hence, the image under inversion in the unit
circle is the set arg(w) = π/4. Reflecting this set across the real axis negates arguments and does not
change the modulus. Therefore, the image is the ray arg(w) = −π/4.

11. From the summary of Section 2.5 we have that the circle
∣∣z + k

2 i
∣∣ =

∣∣k
2

∣∣ is mapped onto the horizontal
line v = 1/k by the reciprocal mapping w = 1/z on the extended complex plane. By identifying k = 2,
we have that the image of the circle |z + i| = 1 is the horizontal line v = 1/2.
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15. From the summary of Section 2.5 we have that the vertical line x = k is mapped onto the circle∣∣w − 1
2k

∣∣ =
∣∣ 1
2k

∣∣ by the reciprocal mapping w = 1/z on the extended complex plane. By making the
identifications k1 = −2 and k2 = −1, we have that the boundary lines x = −2 and x = −1 of the set S
are mapped onto the circles

∣∣w + 1
4

∣∣ =
∣∣ 1
4

∣∣ and
∣∣w + 1

2

∣∣ =
∣∣ 1
2

∣∣, respectively. Since the point z = −3/2
is in the set S, the point w = −2/3 is in the image of the set. Therefore, the image of S under the
reciprocal mapping on the extended complex plane is the set bounded by the circles

∣∣w + 1
4

∣∣ = 1
4 and∣∣w + 1

2

∣∣ = 1
2 and containing the point w = −2/3.

19. (a) The first function in the composition is f(z) = 1/z. Thus, the mapping w = g(f(z)) first inverts
in the unit circle, then reflects across the real axis. From the discussion on page 65 of Section 2.3, the
second function in the composition, g(z) = 2iz + 1, rotates through an angle of Arg(2i) = π/2 about
the origin, magnifies by |2i| = 2, and then translates by 1. Therefore, the mapping w = f(z) inverts
in the unit circle, reflects across the real axis, rotates through an angle of Arg(2i) = π/2 about the
origin, magnifies by |2i| = 2, and then translates by 1.

(b) Under the reciprocal mapping on the extended complex plane, the vertical line x = 4 maps onto
the circle

∣∣w − 1
8

∣∣ = 1
8 . Now under the linear mapping g(z) = 2iz + 1, the circle is rotated through

an angle of π/2 about the origin, magnified by a factor of 2, and then translated by 1. The rotation
maps the circle onto the circle

∣∣w − 1
8 i

∣∣ = 1
8 with the same radius but whose center has been rotated

by π/2. The magnification maps this image onto the circle
∣∣w − 1

4 i
∣∣ = 1

4 whose center and radius
have been doubled. Finally, the translation maps this image onto the circle with the same radius, but
whose center has been transformed to w = 1 + 1

4 i. Therefore, the image of the line x = 4 is the circle∣∣w − 1− 1
4 i

∣∣ = 1
4 .

(c) Under the reciprocal mapping on the extended complex plane, the circle |z + 2| = 2 maps onto
the vertical line u = − 1

4 . Now under the linear mapping g(z) = 2iz + 1, the line is rotated through
an angle of π/2 about the origin, magnified by a factor of 2, and then translated by 1. The rotation
maps the line onto the line v = − 1

4 . The magnification maps this image onto the line v = − 1
2 . Finally,

since the translation is along a vector (b = 1+0i) in the same direction of this line, the line maps onto
itself. Therefore, the image of the circle |z + 2| = 2 is the line v = − 1

2 .

Focus on Concepts

23. Modify the procedure used in Example 2 of Section 2.5.

27. (a) Notice that L is a generalized circle with A = 0 (see (7) in Problem 25 of Section 2.5). By
Problem 26, the image of L is the generalized circle given by (8). What must be true about the
coefficients in (8) in order for the image to be a line?

(b) Use part (a) and consider the coefficients of the image line.

(c) As in part (a), use (8) to determine an equation of the image circle. Complete the square in order
to determine the center and radius.
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2.62.6 Limits and Continuity

Review Topic: Real Limits

limit of a real function: Informally, the limit of f as x tends to x0 exists and is equal to L, denoted
lim

x→x0
f(x) = L, means that values of the real function f(x) can be made arbitrarily close to the real number

L if values of x are chosen sufficiently close to, but not equal to, x0. The precise definition is:

lim
x→x0

f(x) = L if for every ε > 0 there exists a δ > 0 such that |f(x)− L| < ε whenever 0 < |x− x0| < δ.

left and right-hand limits: The limit of f as x tends to x0 from the left, denoted by lim
x→x−0

f(x), and the

limit from the right, denoted lim
x→x+

0

f(x), are defined by:

lim
x→x−0

f(x) = L if for every ε > 0 there exists a δ > 0 such that |f(x) − L| < ε whenever x0 − δ < x < x0;

for lim
x→x+

0

f(x) = L, we require x0 < x < x0 + δ.

A real limit exists when the left and right-hand limits are equal. That is,

lim
x→x0

f(x) = L if and only if lim
x→x−0

f(x) = lim
x→x+

0

f(x) = L.

properties of real limits: The following properties allow many real limits to be evaluated in a somewhat
mechanical fashion. Suppose that f and g are real functions. If lim

x→x0
f(x) = L and lim

x→x0
g(x) = M , then

(i) lim
x→x0

c = c, where c is a real constant,

(ii) lim
x→x0

x = x0,

(iii) lim
x→x0

cf(x) = cL, where c is a real constant,

(iv) lim
x→x0

(f(x)± g(x)) = L±M ,

(v) lim
x→x0

f(x) · g(x) = L ·M ,

(vi) lim
x→x0

f(x)
g(x)

=
L

M
, provided M 6= 0.

continuity of a real function: A real function f is continuous at a point x0 if lim
x→x0

f(x) = f(x0). If

follows from the properties of real limits that real polynomial and rational functions are continuous at all
points in their domains.
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limit of a real multivariable function: The definition of limit for a real multivariable function F (x, y)
is similar to that for a real function f .

lim
(x,y)→(x0,y0)

F (x, y) = L if for every ε > 0 there exists a δ > 0 such that |f(x, y) − L| < ε whenever

0 <
√

(x− x0)2 + (y − y0)2 < δ.

continuity of a real multivariable function: A real multivariable function F is continuous at a point
(x0, y0) if lim

(x,y)→(x0,y0)
F (x, y) = F (x0, y0). If follows from properties of real multivariable limits that two-

variable polynomial and rational functions are continuous at all points in their domains.

2.6 Summary

limit of a complex function: Informally, the limit of f as z tends to z0 exists and is equal to L, denoted
lim

z→z0
f(z) = L, means that values of the complex function f(z) can be made arbitrarily close to the complex

number L if values of z are chosen sufficiently close to, but not equal to, z0. The precise definition is similar
to that of a real function:

lim
z→z0

f(z) = L if for every ε > 0 there exists a δ > 0 such that |f(z)− L| < ε whenever 0 < |z − z0| < δ.

In this definition, both ε and δ are real numbers, while z, z0, f(z), and L are complex numbers.

criterion for the nonexistence of a limit: In the limit of a complex function, z is allowed to approach z0

from any direction in the complex plane. This provides a means of showing that certain complex limits do
not exist: if f(z) approaches two complex numbers L1 6= L2 as z approaches z0 along two different curves,
then lim

z→z0
f(z) does not exist.

real and imaginary parts of a limit: One method that is used to evaluate complex limits is to consider
the real multivariable limits of the real and imaginary parts of f . If f(z) = u(x, y) + iv(x, y), z0 = x0 + iy0,
and L = u0 + iv0, then

lim
z→z0

f(z) = L if and only if lim
(x,y)→(x0,y0)

u(x, y) = u0 and lim
(x,y)→(x0,y0)

v(x, y) = v0.

properties of complex limits: The following properties allow many complex limits to be evaluated in
a somewhat mechanical fashion. Suppose that f and g are complex functions. If lim

z→z0
f(z) = L and

lim
z→z0

g(z) = M , then

(i) lim
z→z0

c = c, where c is a complex constant,

(ii) lim
z→z0

z = z0,

(iii) lim
z→z0

cf(z) = cL, where c is a complex constant,
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(iv) lim
z→z0

(f(z)± g(z)) = L±M ,

(v) lim
z→z0

f(z) · g(z) = L ·M ,

(vi) lim
z→z0

f(z)
g(z)

=
L

M
, provided M 6= 0.

continuity of a complex function: A complex function f is continuous at a point z0 if lim
z→z0

f(z) = f(z0).

criteria for continuity at a point: A complex function f is continuous at a point z0 if each of the following
three conditions hold:

(i) lim
z→z0

f(z) exists,

(ii) f is defined at z0, and

(iii) lim
z→z0

f(z) = f(z0).

real and imaginary parts of a continuous function: If f(z) = u(x, y) + iv(x, y) and z0 = x0 + iy0,
then the complex function f is continuous at the point z0 if and only if both real multivariable functions u
and v are continuous at the point (x0, y0).

properties of continuous functions: If f and g are continuous at the point z0, then cf (where c is a
complex constant), f ± g, and f · g are continuous functions at the point z0. If g(z0) 6= 0, then f/g is
also continuous at the point z0. From this it follows that all complex polynomial functions and all complex
rational functions are continuous on their domains.

a bounding property for continuous functions: If f is a continuous function defined on a closed and
bounded region R, then f is bounded on R. That is, there is a real constant M > 0 such that |f(z)| < M
for all z in R.

branches of multiple-valued functions: Recall from Section 2.4 that a multiple-valued function F is a
rule that assigns a set of one or more complex numbers to each complex number in a subset of C. A branch
of a multiple-valued function F is a function f1 that is continuous on some domain and that assigns exactly
one of the multiple values of F to each point z in that domain.

branch points and branch cuts: A branch cut for a branch f1 is a curve that is excluded from the domain
of the multiple-valued function F so that f1 is continuous on the remaining points. A branch point is a point
that is on the branch cut of every branch.

limit at infinity: The limit of f as z tends to ∞ exists and is equal to L, denoted lim
z→∞

f(z) = L, means

that values of the complex function f(z) can be made arbitrarily close to the complex number L if values of
z are chosen so that |z| is sufficiently large. A useful result for evaluating limits at infinity is:

lim
z→∞

f(z) = L if and only if lim
z→0

f

(
1
z

)
= L.
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infinite limit: The limit of f as z tends to z0 is infinity, denoted lim
z→z0

f(z) =∞, means that |f(z)| can be

made arbitrarily large if values of z are chosen sufficiently close to, but not equal to, z0. A useful result for
evaluating infinite limits is:

lim
z→z0

f(z) =∞ if and only if lim
z→z0

1
f(z)

= 0.

Exercises 2.6.1

3. In order to use Theorem 2.6.1 we need to find the real and imaginary parts of f(z) = |z|2− iz. Setting
z = x + iy we obtain

|z|2 − iz = |x + iy|2 − i(x + iy)
= x2 + y2 − ix− y

= (x2 + y2 − y) + ix.

Identifying x0 = 1, y0 = −1, u(x, y) = x2 + y2 − y, and v(x, y) = x, we have

lim
(x,y)→(1,−1)

(x2 + y2 − y) = 3 and lim
(x,y)→(1,−1)

x = 1.

Therefore, by Theorem 2.6.1, lim
z→1−i

(
|z|2 − iz

)
= 3− i.

7. In order to use Theorem 2.6.1 we need to find the real and imaginary parts of f(z) =
ez − ez

Im(z)
. Setting

z = x + iy we obtain

ez − ez

Im(z)
=

ex+iy − ex−iy

y

=
ex cos y + iex sin y − ex cos y + iex sin y

y

= 2ex

(
sin y

y

)
i.

Identifying x0 = 0, y0 = 0, u(x, y) = 0, and v(x, y) = 2ex

(
sin y

y

)
, we have

lim
(x,y)→(0,0)

0 = 0 and lim
(x,y)→(0,0)

2ex

(
sin y

y

)
= 2

(
lim
x→0

ex
) (

lim
y→0

sin y

y

)
= 2.

In the limit of v(x, y) we made use of the fundamental trigonometric limit lim
y→0

sin y

y
= 1. Therefore,

by Theorem 2.6.1, lim
z→1−i

(
|z|2 − iz

)
= 2i.

11. By (15), we have
lim

z→eiπ/4
z = eiπ/4.
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Using this limit, Theorem 2.6.2(ii), and Theorem 2.6.2(iv), we obtain

lim
z→eiπ/4

(
z +

1
z

)
= eiπ/4 +

1
eiπ/4

= eiπ/4 + e−iπ/4

= cos(π/4) + i sin(π/4) + cos(−π/4) + i sin(−π/4)

=
√

2.

15. By (15), (16), and Theorem 2.6.2(ii), we have

lim
z→z0

(z − z0) = 0.

Thus, we cannot apply Theorem 2.6.2(iv) without simplifying the rational function in the limit. Notice
that:

(az + b)− (az0 + b)
z − z0

=
az + 6 b − az0 − 6 b

z − z0

=
a(z − z0)
z − z0

.

Becuase z is not allowed to take on the value z0 in the limit we can cancel the common factor in the
limit:

lim
z→z0

(az + b)− (az0 + b)
z − z0

= lim
z→z0

a(z − z0)
z − z0

= lim
z→z0

a

= a.

19. (a) If z approaches 0 along the real axis, then z = x + 0i where the real number x is approaching 0.
For this approach we have

lim
z→0

(z

z

)2

= lim
x→0

(
x + 0i

x− 0i

)2

= lim
x→0

(x

x

)2

= lim
x→0

(1)2 = 1.

(b) If z approaches 0 along the imaginary axis, then z = 0+yi where the real number y is approaching
0. For this approach we have

lim
z→0

(z

z

)2

= lim
y→0

(
0 + yi

0− yi

)2

= lim
y→0

(
yi

−yix

)2

= lim
y→0

(−1)2 = 1.

(c) No, the two limits in parts (a) and (b) do not imply that the limit is 1. In order for the limit to
exist and be equal to one, the function must approach 1 along every possible curve through 0. This
has only been verified for two such curves.
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(d) If z approaches 0 along the line y = x, then z = x + xi where the real number x is approaching 0.
For this approach we have

lim
z→0

(z

z

)2

= lim
x→0

(
x + x

x− xi

)2

= lim
x→0

(
x(1 + i)
x(1− i)

)2

= lim
x→0

(
1 + i

1− i

)2

=
2i

−2i
= −1.

(e) By the criterion for the nonexistence of a limit, since the limits in parts (a) and (d) are not the

same, the limit lim
z→0

(z

z

)2

does not exist.

23. Since the numerator of this rational function is approaching a finite number while the denominator is
approaching 0, we expect the limit to be infinite. We use (26) of Section 2.6 to establish this. By (15),
(16), and Theorem 2.6.2, we have

lim
z→i

z2 + 1
z2 − 1

=
i2 + 1
i2 − 1

=
0
−2

= 0.

Therefore, by (26) we obtain

lim
z→i

z2 − 1
z2 + 1

=∞.

Exercises 2.6.2

27. In order to show that f is continuous, we use Definition 2.6.2. By (15), (16), and Theorem 2.6.2, we
have

lim
z→2−i

(
z2 − iz + 3− 2i

)
= (2− i)2 − i(2− i) + 3− 2i = 4− 4i− 1− 2i− 1 + 3− 2i = 5− 8i.

In addition,
f(2− i) = (2− i)2 − i(2− i) + 3− 2i = 5− 8i.

Therefore, f is continuous at z0 = 2− i, since lim
z→2−i

(
z2 − iz + 3− 2i

)
= f(2− i).

31. In order to show that f is continuous, we use Definition 2.6.2. By (15), (16), and Theorem 2.6.2, we
have

lim
z→1

z3 − 1
z − 1

= lim
z→1

(z − 1)(z2 + z + 1)
z − 1

= lim
z→1

(
z2 + z + 1

)
= 12 + 1 + 1 = 3.

In addition, f(1) = 3. Therefore, f is continuous at z0 = 1, since lim
z→1

f(z) = f(1).

35. In order to show that f is not continuous, we use the criteria for continuity at a point. Notice that
f(−i) is undefined because the denominator is 0. Therefore, f is not continuous at z0 = −i because
criterion for continuity (ii) does not hold.
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39. In order to show that f is not continuous, we use the criteria for continuity at a point. Consider the
limit lim

z→i
f(z). If z approaches i along the imaginary axis, then |z| 6= 1. For this approach we have

lim
z→i

f(z) = lim
z→i

z3 − 1
z − 1

=
i3 − 1
i− 1

= i.

On the other hand, if z approaches i along the unit circle, then |z| = 1. For this approach we have

lim
z→i

f(z) = lim
z→i

3 = 3.

Since i 6= 3, the criterion for the nonexistence of a limit tells us that lim
z→i

f(z) does not exist. Therefore,

f is not continuous at z0 = i because criterion for continuity (i) does not hold.

43. If we let z = x + iy, then

f(z) =
z − 1
zz − 4

=
x + iy − 1

(x + iy)(x− iy)− 4
=

x− 1 + iy

x2 + y2 − 4
=

x− 1
x2 + y2 − 4

+ i
y

x2 + y2 − 4
.

Thus, the real and imaginary parts of f are

u(x, y) =
x− 1

x2 + y2 − 4
and v(x, y) =

y

x2 + y2 − 4
,

respectively. By equation (14) of Section 2.6.1, two-variable rational functions are continuous on their
domains, and so, both u and v are continuous for all (x, y) such that x2 + y2 6= 4. Therefore, it follows
from Theorem 2.6.3 that f is continuous for all z such that |z| 6= 2.

Focus on Concepts

47. (a) Use the fact that Re(z) =
z + z

2
.

(b) Use the fact that Im(z) =
z − z

2i
.

(c) Use the fact that |z| =
√

zz.

51. (a) Identify z0 = 1 + i, f(z) = (1− i)z + 2i, and L = 2 + 2i in Definition 2.6.1.

(b) Notice that after simplification

|f(z)− L| = |(1− i)z − 2| = |1− i| · |z − (1 + i)| =
√

2 · |z − (1 + i)|.

55. (a) To show f(z) = Arg(z) is discontinuous at z = −r on the negative real axis, use the criterion for
the nonexistence of a limit. First consider letting z approach −r along the quarter of the circle |z| = r
lying in the second quadrant, then consider letting z approach −r along the quarter of the circle |z| = r
lying in the third quadrant.
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2.72.7 Applications

Review Topic: Vector Fields

vector fields: A vector-valued function F(x, y) = P (x, y)i + Q(x, y)j is called a two-dimensional vector
field.

graphical representation: A graphical representation of a vector field F(x, y) = P (x, y)i + Q(x, y)j is
obtained by plotting the vector F(x, y) based at the initial point (x, y) in the plane.

applications: Vector fields are used widely in applications to science and engineering. For example, the
motion of a fluid can be described by a velocity field in which each vector F(x, y) represents the velocity
of a particle at the point (x, y). Another common application is a force field in which each vector F(x, y)
represents the force on a particle at the point (x, y).

x

y

x

y

velocity field force field

2.7 Summary

complex representation of a vector field: The complex function f(z) = P (x, y) + iQ(x, y) is called
the complex representation of the vector field F(x, y) = P (x, y)i + Q(x, y)j. In general, both F(x, y) =
P (x, y)i + Q(x, y)j and its complex representation f(z) = P (x, y) + iQ(x, y) are called vector fields.

graphical representation: A graphical representation of a vector field f(z) = P (x, y)+iQ(x, y) is obtained
by plotting the complex number f(z) as a vector based at the initial point z in the complex plane.

fluid flow: A planar flow is the flow of a fluid in which the motion and physical traits of the fluid are the
same in all planes parallel to the xy−plane. If f(z) represents the velocity of a particle of the fluid located
at the point z in the complex plane, then f(z) is called a velocity field.
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streamlines: If z(t) = x(t) + iy(t) is a parametrization of a path that a particle follows in a planar fluid
flow, then the derivative z′(t) = x′(t) + iy′(t) represents the velocity of the particle at point z(t). Therefore,
if f(z) = P (x, y) + iQ(x, y) is the velocity field of the fluid, then the following equations must hold:

dx

dt
= P (x, y)

dy

dt
= Q(x, y).

The family of solutions to this system of differential equations is called the streamlines of the planar fluid
flow with velocity field f(z).

finding streamlines: One method for solving the system of differential equations

dx

dt
= P (x, y)

dy

dt
= Q(x, y).

is to convert it to an ordinary differential equation using the chain rule

dy

dt
=

dy

dx
· dx

dt
or

dy

dx
=

dy/dt

dx/dt
.

This gives the ordinary differential equation

dy

dx
=

Q(x, y)
P (x, y)

.

Separation of variables and exact equations are two methods that can sometimes be used to solve this
equation.

separation of variables: An ordinary differential equation of the form

dy

dx
= g(x)h(y)

is called separable and can be solved by integration as follows:

dy

dx
= g(x)h(y)∫

dy

h(y)
=

∫
g(x) dx.

If H(y) and G(x) are antiderivatives of 1/h(y) and g(x), respectively, then the equation

H(y) = G(x) + c

gives solutions of the differential equation.

exact equations: An ordinary differential equation of the form

M(x, y)dx + N(x, y)dy = 0
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is called exact if
∂M

∂y
=

∂N

∂x
.

If M , N , and their first partials are continuous, then this condition ensures that there is a function F (x, y)
such that ∂F/∂x = M and ∂F/∂y = N . We find F using partial integration:

∂F

∂x
= M(x, y)

F (x, y) =
∫

M(, x, y) dx + h(y)

where h is found by differentiating

h′(y) =
∂F

∂y
− ∂

∂y

[∫
M(, x, y) dx

]
= N(x, y)− ∂

∂y

[∫
M(, x, y) dx

]
.

Exercises 2.7

3. By evaluating f we find that

f(1) = 1− 12 = 0,
f(1 + i) = 1− (1 + i)2 = 1− 2i = 1 + 2i,

f(1− i) = 1− (1− i)2 = 1 + 2i = 1− 2i, and
f(i) = 1− (i)2 = 1 + 1 = 2.

Plotting these values as vectors is shown below.

-4 -3 -2 -1 1 2 3 4
x

-4

-3

-2

-1

1

2

3

4
y

-4 -3 -2 -1 1 2 3 4
x

-4

-3

-2

-1

1

2

3

4
y

(a) plotted as position vectors (b) plotted as vectors in the vector field
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7. By evaluating f we find that

f(1) =
1
1

= 1,

f(1 + i) =
1

1 + i
=

1
1− i

=
1
2

+
1
2
i,

f(1− i) =
1

1− i
=

1
1 + i

=
1
2
− 1

2
i, and

f(i) =
1
i

=
1
−i

= i.

Plotting these values as vectors is shown below.
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(a) plotted as position vectors (b) plotted as vectors in the vector field

11. (a) Letting z = x+iy we have f(z) = i(x+iy) = −y+ix. By identifying P (x, y) = −y and Q(x, y) = x
in (3) of Section 2.7, we see that the streamlines are solutions to the system of differential equations

dx

dt
= −y

dy

dt
= x.

This system can be transformed into a single ordinary differential equation by using the chain rule

dy

dt
=

dy

dx
· dx

dt
or

dy

dx
=

dy/dt

dx/dt
.

Substituting dy/dt = x and dx/dt = −y into the second equation yields

dy

dx
= −x

y
.
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This differential equation can be solved by separation of variables:

dy

dx
= −x

y∫
y dy = −

∫
x dx

1
2
y2 = −1

2
x2 + c

x2 + y2 = c.

Therefore, streamlines are circles x2 + y2 = c.
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(b) Streamlines for Problem 11

Focus on Concepts

15. (a) Let c = a + bi, then solve the system

dx

dt
= a

dy

dt
= b,

which can be converted into the ordinary differential equation:

dy

dx
=

b

a
.

(b) Consider the magnitude and direction of the velocity field at an arbitrary point z. Do these
quantities vary across the complex plane?


