
Limit of a Function

Chapter 2

In This Chapter Many topics are included in a typical course in calculus. But the three most fun-
damental topics in this study are the concepts of limit, derivative, and integral. Each of these con-
cepts deals with functions, which is why we began this text by first reviewing some important
facts about functions and their graphs.

Historically, two problems are used to introduce the basic tenets of calculus. These are the
tangent line problem and the area problem. We will see in this and the subsequent chapters that
the solutions to both problems involve the limit concept.
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68 CHAPTER 2 Limit of a Function

2.1 Limits—An Informal Approach
Introduction The two broad areas of calculus known as differential and integral calculus

are built on the foundation concept of a limit. In this section our approach to this important con-
cept will be intuitive, concentrating on understanding what a limit is using numerical and
graphical examples. In the next section, our approach will be analytical, that is, we will use al-
gebraic methods to compute the value of a limit of a function.

Limit of a Function–Informal Approach Consider the function

(1)

whose domain is the set of all real numbers except . Although f cannot be evaluated at
because substituting for x results in the undefined quantity 0�0, can be calcu-

lated at any number x that is very close to . The two tables�4
f (x)�4�4

�4

f (x) �
16 � x2

4 � x

show that as x approaches from either the left or right, the function values appear
to be approaching 8, in other words, when x is near is near 8. To interpret the numer-
ical information in (1) graphically, observe that for every number , the function f can
be simplified by cancellation:

As seen in FIGURE 2.1.1, the graph of f is essentially the graph of with the excep-
tion that the graph of f has a hole at the point that corresponds to . For x sufficiently
close to , represented by the two arrowheads on the x-axis, the two arrowheads on the y-axis,
representing function values , simultaneously get closer and closer to the number 8.
Indeed, in view of the numerical results in (2), the arrowheads can be made as close as we
like to the number 8. We say 8 is the limit of as x approaches .

Informal Definition Suppose L denotes a finite number. The notion of approaching L as
x approaches a number a can be defined informally in the following manner.

• If can be made arbitrarily close to the number L by taking x sufficiently close
to but different from the number a, from both the left and right sides of a, then the
limit of as x approaches a is L.

Notation The discussion of the limit concept is facilitated by using a special notation. If we
let the arrow symbol represent the word approach, then the symbolism

indicates that x approaches a number a from the left,

that is, through numbers that are less than a, and

signifies that x approaches a from the right,

that is, through numbers that are greater than a. Finally, the notation

signifies that x approaches a from both sides,

in other words, from the left and the right sides of a on a number line. In the left-hand table
in (2) we are letting (for example, is to the left of on the number line),
whereas in the right-hand table .

One-Sided Limits In general, if a function can be made arbitrarily close to a number L1

by taking x sufficiently close to, but not equal to, a number a from the left, then we write

(3)f (x) S L1 as x S a�  or   lim
xS a�

 

f (x) � L1.

f (x)

x S �4�
�4�4.001x S �4�

x S a

x S a�

x S a�

S

f (x)

f (x)

f (x)

�4f (x)

f (x)
�4

x � �4
y � 4 � x

f (x) �
16 � x2

4 � x
�

(4 � x)(4 � x)
4 � x

� 4 � x.

x � �4
�4, f (x)

f (x)�4

x �4.1 �4.01 �4.001

f (x) 8.1 8.01 8.001

x �3.9 �3.99 �3.999

f (x) 7.9 7.99 7.999
(2)

x

y �

�4

y

8

16 � x2

4 � x

FIGURE 2.1.1 When x is near ,
is near 8f (x)

�4

59957_CH02a_067-120.qxd  9/26/09  5:20 PM  Page 68

© Jones and Bartlett Publishers, LLC.  NOT FOR SALE OR DISTRIBUTION. 



The number L1 is said to be the left-hand limit of as x approaches a. Similarly, if can
be made arbitrarily close to a number L2 by taking x sufficiently close to, but not equal to, a num-
ber a from the right, then L2 is the right-hand limit of as x approaches a and we write

(4)

The quantities in (3) and (4) are also referred to as one-sided limits.

Two-Sided Limits If both the left-hand limit and the right-hand limit 
exist and have a common value L,

then we say that L is the limit of as x approaches a and write

(5)

A limit such as (5) is said to be a two-sided limit. See FIGURE 2.1.2. Since the numerical tables
in (2) suggest that

(6)

we can replace the two symbolic statements in (6) by the statement

(7)

Existence and Nonexistence Of course a limit (one-sided or two-sided) does not have to
exist. But it is important that you keep firmly in mind:

• The existence of a limit of a function f as x approaches a ( from one side or from
both sides), does not depend on whether f is defined at a but only on whether f is
defined for x near the number a.

For example, if the function in (1) is modified in the following manner

then is defined and but still See FIGURE 2.1.3. In general,

the two-sided limit does not exist

• if either of the one-sided limits or fails to exist, or

• if and but 

EXAMPLE 1 A Limit That Exists
The graph of the function is shown in FIGURE 2.1.4. As seen from the
graph and the accompanying tables, it seems plausible that

and consequently lim
xS4 

f (x) � �6.

lim
xS4�

f (x) � �6  and  lim
xS4�

f (x) � �6

f (x) � �x2 � 2x � 2

L1 � L2.lim
xSa�

f (x) � L2,lim
xSa�

f (x) � L1

lim
xSa�

f (x)lim
xS a�

 f (x)

lim
xSa

 f (x)

lim
xS�4

 

16 � x2

4 � x
� 8.f (�4) � 5,f (�4)

f (x) � •16 � x2

4 � x
, x � �4

5, x � �4,

f (x) S 8 as  x S �4  or equivalently  lim
xS�4

 

16 � x2

4 � x
� 8.

f (x) S 8 as x S �4�  and  f (x) S 8 as  x S �4�,

lim
xSa 

f (x) � L.

f (x)

lim
xSa�  

f (x) � L  and  lim
xSa�

 

f (x) � L,

lim
xSa� 

f (x)lim
xSa� 

f (x)

f (x) S L2 as x S a�  or  lim
xSa� 

f (x) � L2.

f (x)

f (x)f (x)

2.1 Limits—An Informal Approach 69

x S 4� 3.9 3.99 3.999

f (x) �5.41000 �5.94010 �5.99400

x S 4� 4.1 4.01 4.001

f (x) �6.61000 �6.06010 �6.00600

Note that in Example 1 the given function is certainly defined at 4, but at no time did
we substitute into the function to find the value of lim

xS4 
f (x).x � 4

y � ƒ(x)

L

a
x →a� x

y

ƒ(x) →L

ƒ(x) →L

x →a�

x
�4

y

8

y �

16 � x2

4 � x
,

5, x � �4

x ��4

y � �x2 � 2x � 2

x

y

�6

4

FIGURE 2.1.2 as if and
only if as and
as x S a�

f (x) S Lx S a�f (x) S L
x S af (x) S L

FIGURE 2.1.3 Whether f is defined at a or
is not defined at a has no bearing on the
existence of the limit of as x S af (x)

FIGURE 2.1.4 Graph of function in
Example 1
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EXAMPLE 2 A Limit That Exists
The graph of the piecewise-defined function

is given in FIGURE 2.1.5. Notice that is not defined, but that is of no consequence when
considering From the graph and the accompanying tables,lim

xS2 
f (x).

f (2)

f (x) � e x2, x 6 2
�x � 6, x 7 2

70 CHAPTER 2 Limit of a Function

x S 2� 2.1 2.01 2.001

f (x) 3.90000 3.99000 3.99900

x S 2� 1.9 1.99 1.999

f (x) 3.61000 3.96010 3.99600

we see that when we make x close to 2, we can make arbitrarily close to 4, and so

That is,

EXAMPLE 3 A Limit That Does Not Exist
The graph of the piecewise-defined function

is given in FIGURE 2.1.6. From the graph and the accompanying tables, it appears that as x
approaches 5 through numbers less than 5 that Then as x approaches 5 through 
numbers greater than 5 it appears that But since

we conclude that does not exist.lim
xS5 

f (x)

lim
xS5�

f (x) � lim
xS5�

f (x),

lim
xS5�

f (x) � 5.
lim

xS5�
f (x) � 7.

f (x) � e x � 2, x � 5
�x � 10, x 7 5

lim 
xS2

f (x) � 4.

lim
xS2�

f (x) � 4  and  lim
xS2�

f (x) � 4.

f (x)

x S 5� 5.1 5.01 5.001

f (x) 4.90000 4.99000 4.99900

x S 5� 4.9 4.99 4.999

f (x) 6.90000 6.99000 6.99900

EXAMPLE 4 A Limit That Does Not Exist
Recall, the greatest integer function or floor function is defined to be the greatest
integer that is less than or equal to x. The domain of f is the set of real numbers . From
the graph in FIGURE 2.1.7 we see that is defined for every integer n; nonetheless, for each
integer n, does not exist. For example, as x approaches, say, the number 3, the two one-
sided limits exist but have different values:

(8)

In general, for an integer n,

EXAMPLE 5 A Right-Hand Limit
From FIGURE 2.1.8 it should be clear that as that is

It would be incorrect to write since this notation carries with it the connotation
that the limits from the left and from the right exist and are equal to 0. In this case 
does not exist since is not defined for x 6 0.f (x) � 1x

lim
xS0�

1x
lim
xS0

1x � 0

lim
xS0�

1x � 0.

x S 0�,f (x) � 1x S 0

lim
xSn�

f (x) � n � 1   whereas  lim
xSn�

f (x) � n.

lim
xS3�

f (x) � 2   whereas  lim
xS3�

f (x) � 3.

lim
xSn 

f (x)
f (n)

(�q, q)
f (x) � :x ;

x

y

4

2

FIGURE 2.1.5 Graph of function in
Example 2

FIGURE 2.1.6 Graph of function in
Example 3

x

y

5

7

5

x

y

1

1�1 2 3 4 5

2

3

4

�2

y �  x⎣  ⎦

x
x

y y �   x

FIGURE 2.1.7 Graph of function in
Example 4

FIGURE 2.1.8 Graph of function in
Example 5

The greatest integer function was
discussed in Section 1.1.
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If is a vertical asymptote for the graph of then will always fail
to exist because the function values must become unbounded from at least one side of
the line 

EXAMPLE 6 A Limit That Does Not Exist
A vertical asymptote always corresponds to an infinite break in the graph of a function f. In
FIGURE 2.1.9 we see that the y-axis or is a vertical asymptote for the graph of 
The tables

f (x) � 1>x.x � 0

x � a.
f (x)

lim
xSa 

f (x)y � f (x),x � a

2.1 Limits—An Informal Approach 71

x S 0� 0.1 0.01 0.001

f (x) 10 100 1000

x S 0� �0.1 �0.01 �0.001

f (x) �10 �100 �1000

clearly show that the function values become unbounded in absolute value as we get
close to 0. In other words, is not approaching a real number as nor as 
Therefore, neither the left-hand nor the right-hand limit exists as x approaches 0. Thus we
conclude that does not exist.                                                               

EXAMPLE 7 An Important Trigonometric Limit
To do the calculus of the trigonometric functions , and so on, it is important to
realize that the variable x is either a real number or an angle measured in radians. With that
in mind, consider the numerical values of as given in the table that
follows.

x S 0�f (x) � (sin x)>x
sin x, cos x, tan x

lim
xS 0 

f (x)

x S 0�.x S 0�f (x)
f (x)

x S 0� 0.1 0.01 0.001 0.0001

f (x) 0.99833416 0.99998333 0.99999983 0.99999999

It is easy to see that the same results given in the table hold as Because is an
odd function, for and we have and as a consequence

As can be seen in FIGURE 2.1.10, f is an even function. The table of numerical values as well
as the graph of f strongly suggest the following result:

(9)

The limit in (9) is a very important result and will be used in Section 3.4. Another
trigonometric limit that you are asked to verify as an exercise is given by

(10)

See Problem 43 in Exercises 2.1. Because of their importance, both (9) and (10) will be
proven in Section 2.4.

An Indeterminate Form A limit of a quotient , where both the numerator and the
denominator approach 0 as is said to have the indeterminate form 0 0. The limit (7) in
our initial discussion has this indeterminate form. Many important limits, such as (9) and (10),
and the limit

which forms the backbone of differential calculus, also have the indeterminate form 0 0.>
lim
hS0

  
f (x � h) � f (x)

h
,

>x S a,
f (x)>g(x)

lim
xS0

 
1 � cos x

x
� 0.

lim
xS0

 
sin x

x
� 1.

f (�x) �
sin (�x)

�x
�

sin x
x

� f (x).

sin(�x) � �sin x�x 6 0x 7 0
sin xx S 0�.

xxx

y

ƒ(x)

ƒ(x)

y �
1
x

FIGURE 2.1.9 Graph of function in
Example 6

x

y
y �

sin x
x

�� �

1

FIGURE 2.1.10 Graph of function in
Example 7
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EXAMPLE 8 An Indeterminate Form
The limit has the indeterminate form 0 0, but unlike (7), (9), and (10) this limit
fails to exist. To see why, let us examine the graph of the function For

and so we recognize f as the piecewise-defined function

(11)

From (11) and the graph of f in FIGURE 2.1.11 it should be apparent that both the left-hand and
right-hand limits of f exist and

.

Because these one-sided limits are different, we conclude that does not exist.lim
xS0

 0x 0 >x
lim

xS 0�
 

0x 0
x

� �1  and  lim
xS0�

 

0x 0
x

� 1

f (x) �
0x 0
x

� e1, x 7 0
�1, x 6 0.

x � 0, 0x 0 � e x, x 7 0
�x, x 6 0

f (x) � 0x 0 >x.
>lim

xS0
0x 0 >x

72 CHAPTER 2 Limit of a Function

Exercises 2.1 Answers to selected odd-numbered problems begin on page ANS-000.

Fundamentals

In Problems 1–14, sketch the graph of the function to find the
given limit, or state that it does not exist.

1. 2.

3. 4.

5. 6.

7. 8. lim 
xS0

 

0x 0 � x
x

lim 
xS3

 

0x � 3 0
x � 3

lim 
xS0

 

x2 � 3x
x

lim 
xS1

 

x2 � 1
x � 1

lim
xS5

 1x � 1lim
xS0

  
Q1 �

1
x
R

lim
xS2

 
(x2 � 1)lim

xS2
 
(3x � 2)

9. 10.

11. where 

12. where 

13. where f (x) � • x2 � 2x, x 6 2
1, x � 2
x2 � 6x � 8, x 7 2

lim
xS2

 f (x)

f (x) � e x, x 6 2
x � 1, x � 2

lim
xS2

 f (x)

f (x) � e x � 3, x 6 0
�x � 3, x � 0

lim
xS0

 f (x)

lim
xS1

  

x4 � 1
x2 � 1

lim
xS0

  

x3

x

NOTES FROM THE CLASSROOM

While graphs and tables of function values may be convincing for determining whether a
limit does or does not exist, you are certainly aware that all calculators and computers work
only with approximations and that graphs can be drawn inaccurately. A blind use of a cal-
culator can also lead to a false conclusion. For example, is known not to exist,
but from the table of values

one would naturally conclude that On the other hand, the limit

(12)

can be shown to exist and equals See Example 11 in Section 2.2. One calculator gives

The problem in calculating (12) for x very close to 0 is that is correspondingly
very close to 2. When subtracting two numbers of nearly equal values on a calculator a loss
of significant digits may occur due to round-off error.

2x2 � 4

1
4.

lim
xS0

 

2x2 � 4 � 2
x2

lim
xS0 

sin (p>x) � 0.

lim
xS0 

sin (p>x)

lim
xSa

x S 0 �0.00001 �0.000001 �0.0000001

f (x) 0.200000 0.000000 0.000000

x

y y �
x
x

�1

1

FIGURE 2.1.11 Graph of function in
Example 8

x S 0 �0.1 �0.01 �0.001

f (x) 0 0 0

.
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2.1 Limits—An Informal Approach 73

14. where 

In Problems 15–18, use the given graph to find the value of
each quantity, or state that it does not exist.

(a) (b) (c) (d)

15. 16.

17. 18.

In Problems 19–28, each limit has the value 0, but some of the
notation is incorrect. If the notation is incorrect, give the cor-
rect statement.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

In Problems 29 and 30, use the given graph to find each limit,
or state that it does not exist.

29. (a) (b)

(c) (d)

(e) (f) lim
xS4�

  
f (x)lim

xS3 
f (x)

lim
xS1 

f (x)lim
xS0 

f (x)

lim
xS�2

f (x)lim
xS�4�

 

f (x)

lim
xS1

 ln x � 0lim
xS3�

29 � x2 � 0

lim
xS1

 cos�1
 x � 0lim

xSp
 sin x � 0

lim
xS1

2

 
 
:x ; � 0lim

xS0�
:x ; � 0

lim
xS �2�

1x � 2 � 0lim
xS1

11 � x � 0

lim 

xS 0
1
4 x � 0lim 

xS 0
13 x � 0

lim
xS1

 f (x)lim
xS1�

 

f (x)lim
xS1�

f (x)f (1)

f (x) � • x2, x 6 0
2, x � 0
1x � 1, x 7 0

lim
xS0

 f (x)

30. (a) (b)

(c) (d)

(e) (f)

In Problems 31–34, sketch a graph of a function f with the
given properties.

31. does not exist

32.

33. is undefined,

34.

does not exist,

Calculator/CAS Problems

In Problems 35–40, use a calculator or CAS to obtain the graph
of the given function f on the interval [ , 0.5]. Use the
graph to conjecture the value of or state that the limit
does not exist.

35. 36.

37.

38.

39. 40.

In Problems 41–50, proceed as in Examples 3, 6, and 7 and use
a calculator to construct tables of function values. Conjecture the
value of each limit, or state that it does not exist.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50. lim
xS�2

 

x3 � 8
x � 2

lim
xS1

  

x4 � x � 2
x � 1

lim
xS3
c 6
x2 �9

�
61x�2

x2�9
dlim

xS4
  

1x � 2
x � 4

lim
xS 0

  

tan x
x

lim
xS 0

  

x
sin 3x

lim
xS 0

 

1 � cos x
x2

lim
xS 0

  

1 � cos x
x

lim
xS1

  

ln x
x � 1

lim
xS1

  

61x � 612x � 1
x � 1

f (x) �
ln 0x 0

x
f (x) �

e�2x � 1
x

f (x) �
9
x

 [19 � x � 19 � x]

f (x) �
2 � 14 � x

x

f (x) � x cos 

1
x

f (x) � cos 

1
x

lim
xS0

 f (x),
�0.5

f (2) � 3

f (�2) � 2, f (x) � 1, �1 � x � 1, lim
xS�1

f (x) � 1, lim 
xS1

f (x)

f (3) � 0

f (0) � 1, lim
xS1�

f (x) � 3, lim
xS1�

f (x) � 3,  f (1)

f (�2) � 3, lim
xS0�

f (x) � 2, lim
xS0�

f (x) � �1, f (1) � �2

f (�1) � 3, f (0) � �1, f (1) � 0, lim
xS0 

f (x)

x

1

�1

y

lim
xS1 

f (x)lim
xS0 

f (x)

lim
xS�3 

f (x)lim
xS�3�

 f (x)

lim
xS�3�

f (x)lim
xS�5

f (x)

y

x

y � ƒ(x)

y

x

y � ƒ(x)

y

x

y � ƒ(x)

FIGURE 2.1.12 Graph for
Problem 15

FIGURE 2.1.13 Graph for
Problem 16

y

x

y � ƒ(x)

FIGURE 2.1.14 Graph for
Problem 17

FIGURE 2.1.15 Graph for
Problem 18

y

x1

1

FIGURE 2.1.16 Graph for Problem 29

FIGURE 2.1.17 Graph for Problem 30
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74 CHAPTER 2 Limit of a Function

2.2 Limit Theorems
Introduction The intention of the informal discussion in Section 2.1 was to give you an

intuitive grasp of when a limit does or does not exist. However, it is neither desirable nor
practical, in every instance, to reach a conclusion about the existence of a limit based on a
graph or on a table of numerical values. We must be able to evaluate a limit, or discern its
non-existence, in a somewhat mechanical fashion. The theorems that we shall consider in
this section establish such a means. The proofs of some of these results are given in the
Appendix.

The first theorem gives two basic results that will be used throughout the discussion of
this section.

Theorem 2.2.1 Two Fundamental Limits

(i) where c is a constant

(ii) lim
xSa

 x � a

lim
xSa

 c � c,

Theorem 2.2.2 Limit of a Constant Multiple

If c is a constant, then

lim
xSa

 c f (x) � c lim
xSa

  f (x).

Although both parts of Theorem 2.2.1 require a formal proof, Theorem 2.2.1(ii) is almost
tautological when stated in words:

• The limit of x as x is approaching a is a.

See the Appendix for a proof of Theorem 2.2.1(i).

EXAMPLE 1 Using Theorem 2.2.1
(a) From Theorem 2.2.1(i),

(b) From Theorem 2.1.1(ii),

The limit of a constant multiple of a function f is the constant times the limit of f as x
approaches a number a.

lim
xS2

 x � 2   and  lim
xS0

 x � 0.

lim
xS2

 10 � 10   and  lim
xS6

 p � p.

We can now start using theorems in conjunction with each other.

EXAMPLE 2 Using Theorems 2.2.1 and 2.2.2
From Theorems 2.2.1 (ii) and 2.2.2,

(a)

(b)

The next theorem is particularly important because it gives us a way of computing limits
in an algebraic manner.

lim
xS�2

 (�3
2 x) � �3

2 lim
xS�2

 x � (�3
2) . (�2) � 3.

lim
xS8

 5x � 5 lim
xS8

 x � 5 . 8 � 40

59957_CH02a_067-120.qxd  9/26/09  5:20 PM  Page 74

© Jones and Bartlett Publishers, LLC.  NOT FOR SALE OR DISTRIBUTION. 



2.2 Limit Theorems 75

Theorem 2.2.3 can be stated in words:

• If both limits exist, then

(i) the limit of a sum is the sum of the limits,
(ii) the limit of a product is the product of the limits, and

(iii) the limit of a quotient is the quotient of the limits provided the limit of the 
denominator is not zero.

Note: If all limits exist, then Theorem 2.2.3 is also applicable to one-sided limits, that is, the
symbolism in Theorem 2.2.3 can be replaced by either or . Moreover,
Theorem 2.2.3 extends to differences, sums, products, and quotients that involve more than
two functions. See the Appendix for a proof of Theorem 2.2.3.

EXAMPLE 3 Using Theorem 2.2.3
Evaluate 

Solution From Theorems 2.2.1 and 2.2.2, we know that and exist. Hence,
from Theorem 2.2.3(i),

Limit of a Power Theorem 2.2.3(ii) can be used to calculate the limit of a positive integer
power of a function. For example, if then from Theorem 2.2.3(ii) with

By the same reasoning we can apply Theorem 2.2.3(ii) to the general case where is a
factor n times. This result is stated as the next theorem.

f (x)

lim
xSa

[ f (x)] 2 � lim
xSa

[ f (x) . f (x)] � (lim
xSa

 f (x))(lim
xSa

 f (x)) � L2.

g (x) � f (x),
lim
xSa

 f (x) � L,

 � 10 . 5 � 7 � 57.

 � 10 lim
xS5

  x � lim
xS5

 7

 lim
xS5

  (10x � 7) � lim
xS5

 10x � lim
xS5 

 7

lim
xS5

 10xlim
xS5

 7

lim
xS5

(10x � 7).

x S a�x S a�x S a

Theorem 2.2.3 Limit of a Sum, Product, and Quotient

Suppose a is a real number and and exist. If and 

, then

(i)

(ii) , and

(iii) lim
xSa

 
f (x)
g(x)

�
lim
xSa

 f (x)

lim
xSa

 g(x)
�

L1

L2
,  L2 � 0.

lim
xSa

[ f (x)g(x)] � (lim
xSa

 f (x))(lim
xSa

 g(x)) � L1L2

lim
xSa

[ f (x) � g(x)] � lim
xSa

 f (x) � lim
xSa

 g(x) � L1 � L2,

lim
xSa

 g(x) � L2

lim
xSa

 f (x) � L1lim
xSa

 g(x)lim
xSa

 f (x)

Theorem 2.2.4 Limit of a Power

Let and n be a positive integer. Then

lim
xSa

 [ f (x)] n � [ lim
xSa 

f (x)]n � Ln.

lim
xSa

 f (x) � L

For the special case the result given in Theorem 2.2.4 yields

(1)lim
xSa

 xn � an.

f (x) � x,
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76 CHAPTER 2 Limit of a Function

EXAMPLE 4 Using (1) and Theorem 2.2.3
Evaluate

(a) (b)

Solution

(a) From (1),

(b) From Theorem 2.2.1 and (1) we know that and Therefore
by Theorem 2.2.3(iii),

EXAMPLE 5 Using Theorem 2.2.3
Evaluate 

Solution In view of Theorem 2.2.1, Theorem 2.2.2, and (1) all limits exist. Therefore by
Theorem 2.2.3(i),

EXAMPLE 6 Using Theorems 2.2.3 and 2.2.4
Evaluate 

Solution First, we see from Theorem 2.2.3(i) that

It then follows from Theorem 2.2.4 that

Limit of a Polynomial Function Some limits can be evaluated by direct substitution. We can
use (1) and Theorem 2.2.3(i) to compute the limit of a general polynomial function. If

is a polynomial function, then

In other words, to evaluate a limit of a polynomial function f as x approaches a real number
a, we need only evaluate the function at :

(2)

A reexamination of Example 5 shows that where is given by

Because a rational function f is a quotient of two polynomials and , it follows
from (2) and Theorem 2.2.3(iii) that a limit of a rational function can also
be found by evaluating f at :

(3)lim
xSa

 f (x) � lim
xSa

 
p(x)
q(x)

�
p(a)
q(a)

.

x � a
f (x) � p(x)>q(x)

q(x)p(x)
f (3) � 0.

f (x) � x2 � 5x � 6,lim
xS3

  f (x),

lim
xSa

 f (x) � f (a).

x � a

 � cnan � cn�1an�1 � . . . � c1a � c0.

 � lim
xSa

 cnxn � lim
xSa

 cn�1xn�1 � . . . � lim
xSa

 c1x � lim
xSa

 c0

 lim
xSa

 f (x) � lim
xSa 

(cnxn � cn�1xn�1 � . . . � c1x � c0)

f (x) � cnxn � cn�1xn�1 � . . . � c1x � c0

lim
xS1 

(3x � 1)10 � [lim
xS1 

(3x � 1)]10 � 210 � 1024.

lim
xS1  

(3x � 1) � lim
xS1

 3x � lim
xS1

 1 � 2.

lim
xS1

 (3x � 1)10.

lim
xS3

 (x2 � 5x � 6) � lim 
xS3

 x 2 � lim
xS3

 5x � lim
xS3

 6 � 32 � 5 . 3 � 6 � 0.

lim
xS3 

(x2 � 5x � 6).

lim
xS4

 
5
x2

�
lim
xS4

 5

lim
xS4

 x2 �
5
42

�
5

16
.

lim
xS4

  x2 � 16 � 0.lim
xS4

 5 � 5

lim
xS10

 x3 � 103 � 1000.

lim
xS4

 
5
x2

.lim
xS10

x3

f is defined at x � a and
this limit is f(a)

d
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2.2 Limit Theorems 77

Of course we must add to (3) the all-important requirement that the limit of the denomina-
tor is not 0, that is,

EXAMPLE 7 Using (2) and (3)

Evaluate 

Solution is a rational function and so if we identify the polynomials

and , then from (2),

Since it follows from (3) that

You should not get the impression that we can always find a limit of a function by sub-
stituting the number a directly into the function.

EXAMPLE 8 Using Theorem 2.2.3

Evaluate 

Solution The function in this limit is rational, but if we substitute into the function
we see that this limit has the indeterminate form 0 0. However, by simplifying first, we can
then apply Theorem 2.2.3(iii):

Sometimes you can tell at a glance when a limit does not exist.

 �
lim
xS1 

1

lim
xS1

(x � 2)
�

1
3

.

 � lim
xS1

  
1

x � 2

 lim
xS1

  
x � 1

x2 � x � 2
� lim

xS1
  

x � 1
(x � 1)(x � 2)

>
x � 1

lim
xS1

  

x � 1
x2 � x � 2

.

lim
xS�1

  
3x � 4

8x2 � 2x � 2
�

p(�1)
q(�1)

�
�7
4

� �
7
4

.

q(�1) � 0

lim
xS�1

 p(x) � p(�1) � �7  and  lim
xS�1

q(x) � q(�1) � 4.

q(x) � 8x2 � 2x � 2p(x) � 3x � 4

f (x) �
3x � 4

8x2 � 2x � 2

lim
xS�1

  
3x � 4

8x2 � 2x � 2
.

q(a) � 0.

cancellation is valid 
provided that x � 1

d

Theorem 2.2.5 A Limit That Does Not Exist

Let and . Then

does not exist.

lim
xSa

 
f (x)
g(x)

lim
xSa

 g(x) � 0lim
xSa

 f (x) � L1 � 0

PROOF We will give an indirect proof of this result based on Theorem 2.2.3. Suppose
and and suppose further that exists and equals

L2. Then

By contradicting the assumption that , we have proved the theorem.L1 � 0

 � (lim
xSa

 g(x)) QlimxSa
 
f (x)
g(x)
R � 0 . L2 � 0.

 L1 � lim
xSa

 f (x) � lim
xSa

 Qg(x) . f (x)
g(x)
R,  g(x) � 0,

lim
xSa  

( f (x)>g(x))lim
xSa  

g(x) � 0lim
xSa

 f (x) � L1 � 0

If a limit of a rational function has
the indeterminate form as ,
then by the Factor Theorem of
algebra must be a factor of
both the numerator and the
denominator. Factor those quantities
and cancel the factor .x � a

x � a

x S a0>0
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78 CHAPTER 2 Limit of a Function

cancel the factor x � 5d

limit existsd

EXAMPLE 9 Using Theorems 2.2.3 and 2.2.5
Evaluate

(a) (b) (c)

Solution Each function in the three parts of the example is rational.
(a) Since the limit of the numerator x is 5, but the limit of the denominator is 0,

we conclude from Theorem 2.2.5 that the limit does not exist.
(b) Substituting makes both the numerator and denominator 0, and so the limit

has the indeterminate form By the Factor Theorem of algebra, is a factor
of both the numerator and denominator. Hence,

(c) Again, the limit has the indeterminate form 0 0. After factoring the denominator and
canceling the factors we see from the algebra

that the limit does not exist since the limit of the numerator in the last expression
is now 1 but the limit of the denominator is 0.

Limit of a Root The limit of the nth root of a function is the nth root of the limit whenever
the limit exists and has a real nth root. The next theorem summarizes this fact.

 � lim
xS5

 
1

x � 5

 lim
xS5

 
x � 5

x2 � 10x � 25
� lim

xS5
 

x � 5
(x � 5)2

>
 �

0
6

� 0.

 � lim
xS5

 
x � 5
x � 1

 lim
xS5

 
x2 � 10x � 25
x2 � 4x � 5

� lim
xS5

 
(x � 5)2

(x � 5)(x � 1)

x � 50>0.
x � 5

x � 5

lim
xS5

 
x � 5

x2 � 10x � 25
.lim

xS5
 
x2 � 10x � 25
x2 � 4x � 5

lim
xS5

 
x

x � 5

Theorem 2.2.6 Limit of a Root

Let and n be a positive integer. Then

provided that when n is even.L � 0

lim
xSa

 2
n

f (x) � 2
n

lim
xSa

 f (x) � 2
n

L,

lim
xSa

 f (x) � L

An immediate special case of Theorem 2.2.6 is

(4)

provided when n is even. For example, .

EXAMPLE 10 Using (4) and Theorem 2.2.3

Evaluate .

Solution Since we see from Theorem 2.2.3(iii) and (4) that

When a limit of an algebraic function involving radicals has the indeterminate form 0 0,
rationalization of the numerator or the denominator may be something to try.

>

lim
xS�8

 
x � 1

3 x
2x � 10

�
lim

xS�8
  x � [ lim

xS�8 

x]1>3

lim
xS�8

 (2x � 10)
�

�8 � (�8)1>3
�6

�
�6
�6

� 1.

lim
xS�8

(2x � 10) � �6 � 0,

lim
xS�8

 
x � 1

3 x
2x � 10

lim
xS9

1x � [lim
xS9 

x]1>2 � 91>2 � 3a � 0

lim
xSa

 2
n

x � 2
n

a,
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EXAMPLE 11 Rationalization of a Numerator

Evaluate 

Solution Because we see by inspection that the given 
limit has the indeterminate form . However, by rationalization of the numerator we obtain

We are now in a position to use Theorems 2.2.3 and 2.2.6:

In case anyone is wondering whether there can be more than one limit of a function 
as , we state the last theorem for the record.x S a

f (x)

 �
1

2 � 2
�

1
4

.

 �
lim
xS0 

1

2lim
xS0 

(x2 � 4) � lim
xS0 

2

 lim
xS0

 
2x2 � 4 � 2

x2
� lim

xS0
 

1

2x2 � 4 � 2

 � lim
xS0

 
1

2x2 � 4 � 2
.

 � lim
xS0

 
x2

x2A2x2 � 4 � 2B

 � lim
xS0

 
(x2 � 4) � 4

x2A2x2 � 4 � 2B

 lim
xS0

 
2x2 � 4 � 2

x2
� lim

xS0
 
2x2 � 4 � 2

x2
. 2x2 � 4 � 2

2x2 � 4 � 2

0>0
lim
xS0

2x2 � 4 � 2lim
xS0

(x2 � 4) � 2

lim
xS0

 
2x2 � 4 � 2

x2
.

2.2 Limit Theorems 79

this limit is no
longer 0>0d

cancel x’sd

Theorem 2.2.7 Existence Implies Uniqueness

If exists, then it is unique.lim
xSa 

f (x)

NOTES FROM THE CLASSROOM

In mathematics it is just as important to be aware of what a definition or a theorem does not
say as what it says.

(i) Property (i) of Theorem 2.2.3 does not say that the limit of a sum is always the sum of
the limits. For example, does not exist, so

.

Nevertheless, since for the limit of the difference exists

(ii) Similarly, the limit of a product could exist and yet not be equal to the product of the
limits. For example, and so

but

because does not exist.lim
xS0

 (1>x)

 lim
xS0 
Qx . 1

x
R � (lim

xS0 
x) QlimxS0

 
1
x
R

 lim
xS0 
Qx . 1

x
R � lim

xS0 
1 � 1

x>x � 1, for x � 0,

lim
xS0
c 1

x
�

1
x
d � lim

xS0
 0 � 0.

x � 0,1>x � 1>x � 0

lim
xS0
c 1

x
�

1
x
d � lim

xS0
 
1
x

� lim
xS0

 
1
x

lim
xS0 

(1>x)

lim
xSa

We have seen this limit in (12) in
Notes from the Classroom at the end
of Section 2.1.
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80 CHAPTER 2 Limit of a Function

(iii) Theorem 2.2.5 does not say that the limit of a quotient fails to exist whenever the limit
of the denominator is zero. Example 8 provides a counterexample to that interpreta-
tion. However, Theorem 2.2.5 states that a limit of a quotient does not exist whenever
the limit of the denominator is zero and the limit of the numerator is not zero.

Exercises 2.2 Answers to selected odd-numbered problems begin on page ANS-000.

Fundamentals

In Problems 1–52, find the given limit, or state that it does not
exist.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33.

34.

35. 36.

37. 38. lim
rS1

 
2(r 

2 � 3r � 2)3

2
3 (5r � 3)2

lim
xS10A

10x
2x � 5

lim 
xS3

(x � 4)99(x2 � 7)10lim
xS3�

(x � 3)2

2x � 3

lim
xS2
c 1
x � 2

�
6

x2 � 2x � 8
d

lim
xS0
c x2 � 3x � 1

x
�

1
x
d

lim
xS�2

 x1x � 4 13 x � 6lim
xS0�

(x � 2)(x5 � 1)3

(1x � 4)2

lim
xS0

 x3(x4 � 2x3)�1lim
tS1

 

t 3 � 2t � 1
t 3 � t 2 � 2

lim
xS1.5

2x2 � 3x � 9
x � 1.5

lim
xS2

 
x3 � 3x2 � 10x

x � 2

lim
xS�3

 

2x � 6
4x2 � 36

lim
xS10

(x � 2)(x � 5)
(x � 8)

lim
tS�1

t 3 � 1
t 2 � 1

lim
xS1

  

x3 � 1
x � 1

lim
uS8

 
u2 � 5u � 24

u � 8
lim

yS�5

y2 � 25
y � 5

lim
xS2 

x22x2 � 5x � 2lim
tS1

 

1t

t 2 � t � 2

lim
xS8

 (1 � 1
3 x)lim

xS6
12x � 5

lim
xS2

 
(3x � 4)40

(x2 � 2)36
lim

xS�1
(x � x2 � x3)135

lim
xS6

 
x2 � 6x

x2 � 7x � 6
lim
sS7

 
s2 � 21
s � 2

lim
tS�2

(t � 4)2lim 
tS1

(3t � 1)(5t 2 � 2)

lim
xS0

 
x � 5

3x
lim
xS2

 
2x � 4
x � 7

lim
xS6

 (�5x2 � 6x � 8)lim
xS�1

(x3 � 4x � 1)

lim
xS5

 (�x3)lim
xS�2

x2

lim
xS2

 (3x � 9)lim
xS3

 (�4)x

lim
xS0 

cos plim
xS�4

15

39. 40.

41. 42.

43. 44.

45. 46.

47.

48.

49. 50.

51. 52.

In Problems 53–60, assume that and 
Find the given limit, or state that it does not exist.

53. 54.

55. 56.

57. 58.

59. 60.

Think About It

In Problems 61 and 62, use the first result to find the limits in
parts (a)–(c). Justify each step in your work citing the appropri-
ate property of limits.

61.

(a) (b) (c)

62.

(a) (b) (c)

63. Using show that 

64. If find lim
xS2

 f (x).lim
xS2

 
2 f (x) � 5

x � 3
� 4,

lim
xS0

 sin x � 0.lim
xS0

 
sin x

x
� 1,

lim
xS0

 
8x2 � sin x

x
lim
xS0

 
1 � cos2x

x2
lim
xS0

 
2x

sin x

lim
xS0

 
sin x

x
� 1

lim
xS1

 
(x100 � 1)2

(x � 1)2
lim
xS1

 
x50 � 1
x � 1

lim
xS1

 
x100 � 1
x2 � 1

lim
xS1

 
x100 � 1

x � 1
� 100

lim
xSa

 
6x � 3

x f (x) �g(x)
, a � �1

2lim
xSa 

 x f (x)g(x)

lim
xSa

[ f (x)] 2 � 4[g(x)] 2

f (x) � 2g(x)
lim
xSa

 
f (x)

f (x) � 2g(x)

lim
xSa

 
A

f (x)
g(x)

lim
xSa

 

1
g(x)

lim
xSa

 [ f  (x)] 3lim
xSa

[5f  (x) � 6g(x)]

lim
xSa 

g(x) � 2.lim
xSa 

f (x) � 4

lim
xS1

 
4 � 1x � 15

x2 � 1
lim
yS0

 
125 � y � 5
11 � y � 1

lim
uS5

 
1u � 4 � 3

u � 5
lim
tS1

 
1t � 1
t � 1

lim
hS0

 
2x � h � 1x

h
 (x 7 0)

lim
hS0

 
1
h

 a 1
x � h

�
1
x
b

lim
hS0

 
1
h

[(1 � h)3 � 1]lim
hS0

 
(8 � h)2 � 64

h

lim
xS�1

2u2x2 � 2xu � 1lim
tS1

 (at 2 � bt)2

lim
xS1� 
a8x �

2
x
b5

lim
xS0�

 
B
5 x3 � 64x

x2 � 2x

lim
tS2

 (t � 2)3>2(2t � 4)1>3lim
hS4

 
A

h
h � 5

 ah2 � 16
h � 4

b2
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2.3 Continuity 81

2.3 Continuity
Introduction In the discussion in Section 1.1 on graphing functions, we used the phrase

“connect the points with a smooth curve.” This phrase invokes the image of a graph that is a
nice continuous curve—in other words, a curve with no breaks, gaps, or holes in it. Indeed, a
continuous function is often described as one whose graph can be drawn without lifting pencil
from paper.

In Section 2.2 we saw that the function value played no part in determining the exis-
tence of But we did see in Section 2.2 that limits as of polynomial functions
and certain rational functions could be found by simply evaluating the function at The
reason we can do that in some instances is the fact that the function is continuous at a num-
ber In this section we will see that both the value and the limit of f as x approaches
a number a play major roles in defining the notion of continuity. Before giving the defini-
tion, we illustrate in FIGURE 2.3.1 some intuitive examples of graphs of functions that are not
continuous at a.

f (a)a.

x � a.
x S alim

xSa  
f (x).

f (a)

FIGURE 2.3.1 Four examples of f not continuous at a

Continuity at a Number Figure 2.3.1 suggests the following threefold condition of continu-
ity of a function f at a number a.

Definition 2.3.1 Continuity at a

A function f is said to be continuous at a number a if

(i ) is defined, (ii ) exists, and (iii) .lim
xSa f (x) � f (a)lim

xSa f (x)f (a)

If any one of the three conditions in Definition 2.3.1 fails, then f is said to be discon-

tinuous at the number a.

EXAMPLE 1 Three Functions
Determine whether each of the functions is continuous at 1.

(a) (b) (c) .

Solution

(a) f is discontinuous at 1 since substituting into the function results in . We
say that is not defined and so the first condition of continuity in Definition 2.3.1
is violated.

(b) Because g is defined at 1, that is, we next determine whether 
exists. From

(1)lim
xS1

 
x3 � 1
x � 1

� lim 
xS1

(x � 1)(x2 � x � 1)
x � 1

� lim
xS1 

(x2 � x � 1) � 3

lim
xS1 

g(x)g(1) � 2,

f (1)
0>0x � 1

h (x) � •
x3 � 1
x � 1

, x � 1

3, x � 1
g(x) � •

x3 � 1
x � 1

, x � 1

2, x � 1
f (x) �

x3 � 1
x � 1

y

x

y

a

(a) lim ƒ(x) does not

exist and ƒ(a)

is not defined

x → a

x

y

a

(b) lim ƒ(x) does not

exist but ƒ(a)

is defined

x → a

x

y

a

(c) lim ƒ(x) exists

but ƒ(a) is not

defined

x → a

x

y

a
x

y

a

(d) lim ƒ(x) exists,

ƒ(a) is defined,

but lim ƒ(x) �ƒ(a)

x → a

x → a

Recall from algebra that
a3 � b3 � (a � b)(a2 � ab � b2)
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82 CHAPTER 2 Limit of a Function

we conclude exists and equals 3. Since this value is not the same as
, the second condition of Definition 2.3.1 is violated. The function g is

discontinuous at 1.
(c) First, is defined, in this case, Second, from (1) of part (b).

Third, we have Thus all three conditions in Definition 2.3.1
are satisfied and so the function h is continuous at 1.

The graphs of the three functions are compared in FIGURE 2.3.2.

lim
xS1

 h (x) � h (1) � 3.
lim
xS1

 h (x) � 3h (1) � 3.h (1)

g(1) � 2
lim
xS1

 g(x)

y � ƒ(x)

x

y

3

1

(a)

y � g(x)

x

y

3

2

1

(b)

y � h(x)

x

y

3

1

(c)

FIGURE 2.3.2 Graphs of functions in Example 1

EXAMPLE 2 Piecewise-Defined Function
Determine whether the piecewise-defined function is continuous at 2.

Solution First, observe that is defined and equals 5. Next, we see from

that the limit of f as exists. Finally, because it follows from (iii) of

Definition 2.3.1 that f is discontinuous at 2. The graph of f is shown in FIGURE 2.3.3.

Continuity on an Interval We will now extend the notion of continuity at a number a to
continuity on an interval.

lim
xS2

  
f (x) � f (2) � 5,x S 2

lim
xS2� f (x) � lim

xS2�
x2 � 4

lim
xS2� f (x) � lim

xS2�
(�x � 6) � 4

¶  implies  lim
xS2

 f (x) � 4

f (2)

f (x) � • x2, x 6 2
5, x � 2
�x � 6, x 7 2.

Definition 2.3.2 Continuity on an Interval

A function f is continuous

(i) on an open interval (a, b) if it is continuous at every number in the interval; and
(ii) on a closed interval [a, b] if it is continuous on (a, b) and, in addition,

lim
xSa� f (x) � f (a)  and  lim

xSb� f (x) � f (b).

y � ƒ(x)

x

y

5

2

FIGURE 2.3.3 Graph of function in
Example 2

If the right-hand limit condition given in (ii) of Definition 2.3.1 is

satisfied, we say that f is continuous from the right at a; if , then f is

continuous from the left at b.
Extensions of these concepts to intervals such as [a, b), (a, b],

and are made in the expected manner. For example, f is con-
tinuous on [1, 5) if it is continuous on the open interval (1, 5) and continuous from the
right at 1.

(�q, b ](�q, q), [a, q),
(�q, b),(a, q),

lim
xSb�  

f (x) � f (b)

lim
xSa� f (x) � f (a)
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EXAMPLE 3 Continuity on an Interval
(a) As we see from FIGURE 2.3.4(a), is continuous on the open interval

but is not continuous on the closed interval since neither 
nor is defined.

(b) is continuous on Observe from Figure 2.3.4(b) that 

and 

(c) is continuous on the unbounded interval because

for any real number a satisfying and f is continuous from the right at 1 since

See Figure 2.3.4(c).

A review of the graphs in Figures 1.4.1 and 1.4.2 shows that and are
continuous on Figures 1.4.3 and 1.4.5 show that and are dis-
continuous at , whereas Figures 1.4.4 and 1.4.6 show
that and are discontinuous at . The inverse
trigonometric functions and are continuous on the closed interval

See Figures 1.5.9 and 1.5.12. The natural exponential function is continuous
on , whereas the natural logarithmic function is continuous on See
Figures 1.6.5 and 1.6.6.

Continuity of a Sum, Product, and Quotient When two functions f and g are continuous at a
number a, then the combinations of functions formed by addition, multiplication, and division
are also continuous at a. In the case of division we must, of course, require that g(a) � 0.f>g

(0, q).y � ln x(�q, q)
y � ex[�1, 1] .

y � cos�1
 xy � sin�1

 x
x � np, n � 0, �1, �2, . . .y � csc xy � cot x

x � (2 n � 1) p>2, n � 0, �1, �2, . . . 
y � sec xy � tan x(�q, q).

y � cos xy � sin x

lim
xS1�

1x � 1 � f (1) � 0.

a 7 1,

lim
xSa f (x) � 1lim

xSa
(x � 1) � 1a � 1 � f (a),

[1, q),f (x) � 1x � 1

lim
xS1� f (x) � f (1) � 0.lim

xS�1�  f (x) � f (�1) � 0

[�1, 1] .f (x) � 21 � x2

f (1)
f (�1)[�1, 1] ,(�1, 1)

f (x) � 1>21 � x2

2.3 Continuity 83

1

x

y

(a)

�1

y �
1

1 � x 2

(b)

1�1
x

y
y �   1 � x 2

(c)

1

x

y
y �    x � 1

FIGURE 2.3.4 Graphs of functions in
Example 3

Theorem 2.3.1 Continuity of a Sum, Product, and Quotient

If the functions f and g are continuous at a number a, then the sum the product fg,
and the quotient are continuous at x � a.f>g (g(a) � 0)

f � g,

PROOF OF CONTINUITY OF THE PRODUCT fg As a consequence of the assumption that the
functions f and g are continuous at a number a, we can say that both functions are defined
at , the limits of both functions as x approaches a exist, and

Because the limits exist, we know that the limit of a product is the product of the limits:

The proofs of the remaining parts of Theorem 2.3.1 are obtained in a similar manner.

Since Definition 2.3.1 implies that is continuous at any real number x, we see
from successive applications of Theorem 2.3.1 that the functions are also
continuous for every x in the interval Because a polynomial function is just a sum
of powers of x, another application of Theorem 2.3.1 shows:

• A polynomial function f is continuous on 

Functions, such as polynomials and the sine and cosine, that are continuous for all real num-
bers, that is, on the interval are said to be continuous everywhere. A function(�q, q),

(�q, q).

(�q, q).
x, x2, x3, . . . , xn

f (x) � x

lim
xSa 

( f (x)g(x)) � ( lim
xSa 

f (x)) ( lim
xSa 

g(x)) � f (a)g(a).

lim
xSa  

f (x) � f (a)  and  lim
xSa 

g(x) � g(a).

x � a
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that is continuous everywhere is also just said to be continuous. Now, if and are
polynomial functions, it also follows directly from Theorem 2.3.1 that:

• A rational function is continuous except at numbers at which the de-
nominator is zero.

Terminology A discontinuity of a function f is often given a special name.

• If is a vertical asymptote for the graph of then f is said to have an
infinite discontinuity at a.

Figure 2.3.1(a) illustrates a function with an infinite discontinuity at a.

• If and and then f is said to have a finite dis-

continuity or a jump discontinuity at a.

The function given in FIGURE 2.3.5 has a jump discontinuity at 0, since 

and The greatest integer function has a jump discontinuity at every 

integer value of x.

• If exists but either f is not defined at or then f is said 

to have a removable discontinuity at a.

For example, the function is not defined at but 
By defining the new function

is continuous everywhere. See FIGURE 2.3.6.

Continuity of The plausibility of the next theorem follows from the fact that the graph
of an inverse function is a reflection of the graph of f in the line y � x.f 

�1
f �1

f (x) � • x2 � 1
x � 1

, x � 1

2, x � 1

f (1) � 2,
lim
xS1 

f (x) � 2.x � 1f (x) � (x2 � 1)>(x � 1)

f (a) � lim
xSa 

f (x),x � alim
xSa 

f (x)

f (x) � :x ;lim
xS0�  

f (x) � 1.

lim
xS0�  

f (x) � �1y � f (x)

L1 � L2,lim
xSa� f (x) � L2lim

xSa� f (x) � L1

y � f (x),x � a

q(x)
f (x) � p(x)>q(x)

q(x)p(x)

84 CHAPTER 2 Limit of a Function

�1

1

y

x

FIGURE 2.3.5 Jump discontinuity at
x � 0

y

1

1

1
x

x 2 �1

x �1y �

x 2 �1

x �1

,     x �1

2, x � 1 

(b) Continuous at 1

(a) Not continuous at 1

y �

y

x
1

FIGURE 2.3.6 Removable discontinuity 
at x � 1

Theorem 2.3.2 Continuity of an Inverse Function

If f is a continuous one-to-one function on an interval [a, b], then is continuous on
either or .[ f (b), f (a)][ f (a), f (b)]

f �1

Theorem 2.3.3 Limit of a Composite Function

If and f is continuous at L, then

lim
xSa 

f (g(x)) � f  ( lim
xSa  

 g (x)) � f (L).

lim
xSa

 g(x) � L

The sine function, is continuous on and, as noted previously,
the inverse of f, , is continuous on the closed interval 

Limit of a Composite Function The next theorem tells us that if a function f is continuous,
then the limit of the function is the function of the limit. The proof of Theorem 2.3.3 is given
in the Appendix.

� [�1, 1] .
f (p>2)][  f (�p>2),y � sin�1

 x
[�p>2, p>2]f (x) � sin x,

Theorem 2.3.3 is useful in proving other theorems. If the function g is continuous at a
and f is continuous at , then we see thatg(a)
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2.3 Continuity 85

Theorem 2.3.5 Intermediate Value Theorem

If f denotes a function continuous on a closed interval [a, b] for which and if
N is any number between and , then there exists at least one number c between a
and b such that f (c) � N.

f (b)f (a)
f (a) � f (b),

EXAMPLE 5 Consequence of Continuity
The polynomial function is continuous on the interval and

For any number N for which Theorem 2.3.5 guarantees
that there is a solution to the equation that is, in 
Specifically, if we choose then is equivalent to

Although the latter equation has two solutions, only the value is between and 4.   

The foregoing example suggests a corollary to the Intermediate Value Theorem.

• If f satisfies the hypotheses of Theorem 2.3.5 and and have opposite algebraic
signs, then there exists a number x between a and b for which 

This fact is often used in locating real zeros of a continuous function f. If the function val-
ues and have opposite signs, then by identifying , we can say that there is at
least one number c in (a, b) for which . In other words, if either 
or , then has at least one zero c in the interval (a, b). The plausibility
of this conclusion is illustrated in FIGURE 2.3.8.

f (x)f (a) 6 0, f (b) 7 0
f (a) 7 0, f (b) 6 0f (c) � 0

N � 0f (b)f (a)

f (x) � 0.
f (b)f (a)

�1c � 3

c2 � c � 6 � 0  or  (c � 3)(c � 2) � 0.

c2 � c � 5 � 1N � 1,
[�1, 4] .c2 � c � 5 � Nf (c) � N,

�3 � N � 7,f (�1) � �3, f (4) � 7.
[�1, 4]f (x) � x2 � x � 5

EXAMPLE 4 Continuity of a Composite Function
is continuous on the interval and is continuous on

But, since for all x, the composite function

is continuous everywhere.

If a function f is continuous on a closed interval [a, b], then, as illustrated in FIGURE 2.3.7,
f takes on all values between and . Put another way, a continuous function f does
not “skip” any values.

f (b)f (a)

( f � g)(x) � f (g(x)) � 2x2 � 2

g(x) � 0(�q, q).
g(x) � x2 � 2[0, q)f (x) � 1x

FIGURE 2.3.8 Locating zeros of functions using the Intermediate Value Theorem

y

x

y � ƒ(x)

ƒ(b) 	 0

a c

b

(a) One zero c in (a, b)

ƒ(a) 
 0

(b) Three zeros c
1
, c

2
, c

3
 in (a, b)

y

x

ƒ(b) 
 0
y � ƒ(x)

a

c
1

c
2

c
3

b
ƒ(a) 	 0

Theorem 2.3.4 Continuity of a Composite Function

If g is continuous at a number a and f is continuous at , then the composite function
is continuous at a.( f � g)(x) � f (g(x))

g(a)

a c

N

b

y

x

ƒ(a)

ƒ(b)

FIGURE 2.3.7 A continuous function f
takes on all values between and f (b)f (a)

We have just proved that the composite of two continuous functions is continuous.

lim
xSa 

f (g(x)) � f  ( lim
xSa 

g(x)) � f (g(a)).
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Bisection Method As a direct consequence of the Intermediate Value Theorem, we can
devise a means of approximating the zeros of a continuous function to any degree of accuracy.
Suppose is continuous on the closed interval [a, b] such that and have oppo-
site algebraic signs. Then, as we have just seen, f has a zero in [a, b]. Suppose we bisect the in-
terval [a, b] by finding its midpoint If then m1 is a zero of f and
we proceed no further, but if then we can say that:

• If and have opposite algebraic signs, then f has a zero c in [a, m1].
• If and have opposite algebraic signs, then f has a zero c in [m1, b].

That is, if then f has a zero in an interval that is one-half the length of the orig-
inal interval. See FIGURE 2.3.9. We now repeat the process by bisecting this new interval by
finding its midpoint m2. If m2 is a zero of f, we stop, but if we have located a
zero in an interval that is one-fourth the length of [a, b]. We continue this process of locat-
ing a zero of f in shorter and shorter intervals indefinitely. This method of approximating a
zero of a continuous function by a sequence of midpoints is called the bisection method.
Reinspection of Figure 2.3.9 shows that the error in an approximation to a zero in an interval
is less than one-half the length of the interval.

EXAMPLE 6 Zeros of a Polynomial Function
(a) Show that the polynomial function has a real zero in 

and in [1, 2].
(b) Approximate the zero in [1, 2] to two decimal places.

Solution

(a) Observe that and This change in sign indicates that
the graph of f must cross the x-axis at least once in the interval In other
words, there is at least one zero of f in 

Similarly, and implies that there is at least one
zero of f in the interval [1, 2].

(b) A first approximation to the zero in [1, 2] is the midpoint of the interval:

Now since and we know that the zero lies in the
interval 

The second approximation is the midpoint of 

Since the zero lies in the interval 
The third approximation is the midpoint of 

After eight calculations, we find that with error less than 0.005.
Hence, 1.30 is an approximation to the zero of f in [1, 2] that is accurate to two
decimal places. The graph of f is given in FIGURE 2.3.10.

m8 � 1.300781

m3 �
5
4 � 3

2

2
�

11
8

� 1.375,  error 6 1
2

 a3
2

�
5
4
b � 0.125.

[5
4, 

3
2]:

[5
4, 

3
2].f (m2) � f  (5

4) 6 0,

m2 �
1 � 3

2

2
�

5
4

� 1.25,  error 6 1
2

 Q3
2

� 1R � 0.25.

[1, 32]:
[1, 32].

f (1) 6 0,f (m1) � f  (3
2) 7 0

m1 �
1 � 2

2
�

3
2

� 1.5,  error 6 1
2

 (2 � 1) � 0.5.

f (2) � 57 7 0f (1) � �3 6 0
[�1, 0] .

[�1, 0] .
f (0) � �1 6 0.f (�1) � 3 7 0

[�1, 0]f (x) � x6 � 3x � 1

f (m2) � 0,

f (m1) � 0,

f (b)f (m1)
f (m1)f (a)

f (m1) � 0,
f (m1) � 0,m1 � (a � b)>2.

f (b)f (a)y � f (x)

86 CHAPTER 2 Limit of a Function

midpoint is an

approximation

to the zerozero of ƒ

x
a m1c b

→→

FIGURE 2.3.9 The number m1 is an
approximation to the number c

�1 1

1

2

y

x

FIGURE 2.3.10 Graph of function in
Example 6

If we wish the approximation to be
accurate to three decimal places, we
continue until the error becomes less

Exercises 2.3 Answers to selected odd-numbered problems begin on page ANS-000.

Fundamentals

In Problems 1–12, determine the numbers, if any, at which the
given function f is discontinuous.

1. 2. f (x) �
x

x2 � 4
f (x) � x3 � 4x2 � 7

3. 4.

5. 6. f (x) �
tan x

x � 3
f (x) �

x � 1
sin 2x

f (x) �
x2 � 1
x4 � 1

f (x) � (x2 � 9x � 18)�1
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2.3 Continuity 87

7. 8.

9.

10.

11. 12.

In Problems 13–24, determine whether the given function f is
continuous on the indicated intervals.

13.

(a) (b)

14.

(a) (b)

15.

(a) (0, 4] (b) [1, 9]

16.

(a) (b)

17.

(a) (b)

18.

(a) (b)

19.

(a) (b)

20.

(a) (b) [1, 6]

21.

(a) (b)

22.

(a) (b)

23.

FIGURE 2.3.11 Graph for Problem 23

(a) (b) (2, 4][�1, 3]

y � ƒ(x)

x

y

[�2>p, 2>p ][1>p, q)

f (x) � sin 

1
x

[p>2, 3p>2](�q, q)

f (x) �
x

2 � sec x

(�q, �1]

f (x) �
1

0x 0 � 4

(�q, q)[�4, �3]

f (x) �
x

x3 � 8

(2p, 3p)(0, p)

f (x) � csc x

[�p>2, p>2][0, p ]

f (x) � tan x

[3, q)[�3, 3]

f (x) � 2x2 � 9

f (x) �
1
1x

(0, q)(�q, q)

f (x) �
1
x

[5, q)[�1, 4]

f (x) � x2 � 1

f (x) �
2

ex � e�xf (x) �
1

2 � ln x

f (x) � μ
x � 1

1x � 1
, x � 1

1

2
, x � 1

f (x) � •
x2 � 25
x � 5

, x � 5

10, x � 5

f (x) � •
0 x 0
x

, x � 0

1, x � 0
f (x) � • x, x 6 0

x2, 0 � x 6 2
x, x 7 2

24.

FIGURE 2.3.12 Graph for Problem 24

(a) [2, 4] (b) [1, 5]

In Problems 25–28, find values of m and n so that the given
function f is continuous.

25.

26.

27.

28.

In Problems 29 and 30, denotes the greatest integer not
exceeding x. Sketch a graph to determine the points at which
the given function is discontinuous.

29. 30.

In Problems 31 and 32, determine whether the given function
has a removable discontinuity at the given number a. If the dis-
continuity is removable, define a new function that is continu-
ous at a.

31. 32.

In Problems 33–42, use Theorem 2.3.3 to find the given limit.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

In Problems 43 and 44, determine the interval(s) where is
continuous.

43.

44. f (x) �
5x

x � 1
, g(x) � (x � 2)2

f (x) �
1

1x � 1
, g(x) � x � 4

f � g

lim
xSp

ecos 3xlim
xS�3

sin�1 a x � 3
x2 � 4x � 3

b
lim
tS1

(4t � sin 2pt)3lim
tSp

2t � p � cos2t

lim
tS0 

tan a pt
t 2 � 3t

blim
tSp 

cos a t 2 � p2

t � p
b

lim
xSp>2(1 � cos(cos x))lim

xSp>2sin(cos x)

lim
xSp2

cos1xlim
xSp>6sin(2x � p>3)

f (x) �
x4 � 1
x2 � 1

, a � 1f (x) �
x � 9
1x � 3

, a � 9

f (x) � :x ; � xf (x) � :2x � 1 ;

:x ;

f (x) � •mx � n, x 6 1
5, x � 1
2mx � n, x 7 1

f (x) � •mx, x 6 3
n, x � 3
�2x � 9, x 7 3

f (x) � •
x2 � 4
x � 2

, x � 2

m, x � 2

f (x) � emx, x 6 4
x2, x � 4

y � ƒ(x)

x

y
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88 CHAPTER 2 Limit of a Function

In Problems 45–48, verify the Intermediate Value Theorem for
f on the given interval. Find a number c in the interval for the
indicated value of N.

45.

46.

47.

48.

49. Given that show that there is a number
c such that 

50. Given that f and g are continuous on [a, b] such that
and show that there is a number

c in (a, b) such that [Hint: Consider the
function .]

In Problems 51–54, show that the given equation has a solution
in the indicated interval.

51.

52.

53.

54.

Calculator/CAS Problems

In Problems 55 and 56, use a calculator or CAS to obtain the
graph of the given function. Use the bisection method to
approximate, to an accuracy of two decimal places, the real
zeros of f that you discover from the graph.

55. 56.

57. Use the bisection method to approximate the value of c in
Problem 49 to an accuracy of two decimal places.

58. Use the bisection method to approximate the solution in
Problem 51 to an accuracy of two decimal places.

59. Use the bisection method to approximate the solution in
Problem 52 to an accuracy of two decimal places.

f (x) � x5 � x � 1f (x) � 3x5 � 5x3 � 1

sin x
x

�
1
2

, (p>2, p)

e�x � ln x, (1, 2)

x2 � 1
x � 3

�
x4 � 1
x � 4

� 0, (�3, 4)

2x7 � 1 � x, (0, 1)

f � g
f (c) � g(c).

f (b) 6 g(b),f (a) 7 g(a)

f (c) � 50.
f (x) � x5 � 2x � 7,

f (x) �
10

x2 � 1
, [0, 1] ; N � 8

f (x) � x3 � 2x � 1, [�2, 2] ; N � 1

f (x) � x2 � x � 1, [�2, 3] ; N � 6

f (x) � x2 � 2x, [1, 5] ; N � 8

60. Suppose a closed right-circular cylinder has a given
volume V and surface area S (lateral side, top, and bottom).

(a) Show that the radius r of the cylinder must satisfy the
equation 

(b) Suppose and Use a calcu-
lator or CAS to obtain the graph of 

(c) Use the graph in part (b) and the bisection method to
find the dimensions of the cylinder corresponding to
the volume and surface area given in part (b). Use an
accuracy of two decimal places.

Think About It

61. Given that f and g are continuous at a number a, prove that
is continuous at a.

62. Given that f and g are continuous at a number a and
prove that is continuous at a.

63. Let be the greatest integer function and
Determine the points at which is

discontinuous.

64. Consider the functions

Sketch the graphs of and Determine whether 
and are continuous at 0.

65. A Mathematical Classic The Dirichlet function

is named after the German mathematician Johann Peter

Gustav Lejeune Dirichlet (1805–1859). Dirichlet is respon-
sible for the definition of a function as we know it today.

(a) Show that f is discontinuous at every real number a. In
other words, f is a nowhere continuous function.

(b) What does the graph of f look like?
(c) If r is a positive rational number, show that f is 

r-periodic, that is, f (x � r) � f (x).

f (x) � e1, x rational
0, x irrational

g � f
f � gg � f.f � g

f (x) � 0x 0  and  g (x) � e x � 1, x 6 0
x � 1, x � 0.

f � gg (x) � cos x.
f (x) � :x ;

f>gg (a) � 0,

f � g

1800r � 6000.2pr3 �f (r) �

S � 1800 ft2.V � 3000 ft3
2pr3 � Sr � 2V � 0.

2.4 Trigonometric Limits
Introduction In this section we examine limits that involve trigonometric functions. As the

examples in this section will illustrate, computation of trigonometric limits entails both alge-
braic manipulations and knowledge of some basic trigonometric identities. We begin with some
simple limit results that are consequences of continuity.

Using Continuity We saw in the preceding section that the sine and cosine functions are
everywhere continuous. It follows from Definition 2.3.1 that for any real number a,

(1)

(2)lim
xSa

 cos x � cos a.

lim
xSa

 sin x � sin a,
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Similarly, for a number a in the domain of the given trigonometric function

(3)

(4)

EXAMPLE 1 Using (1) and (2)
From (1) and (2) we have

(5)

We will draw on the results in (5) in the following discussion on computing other trigono-
metric limits. But first, we consider a theorem that is particularly useful when working with
trigonometric limits.

Squeeze Theorem The next theorem has many names: Squeeze Theorem, Pinching

Theorem, Sandwiching Theorem, Squeeze Play Theorem, and Flyswatter Theorem are just
a few of them. As shown in FIGURE 2.4.1, if the graph of is “squeezed” between the graphs
of two other functions and for all x close to a, and if the functions g and h have a com-
mon limit L as it stands to reason that f also approaches L as The proof of
Theorem 2.4.1 is given in the Appendix.

x S a.x S a,
h(x)g(x)

f (x)

lim
xS0

 sin x � sin 0 � 0 and lim
xS0

 cos x � cos 0 � 1.

lim
xSa 

sec x � sec a,  lim
xSa

 csc x � csc a.

lim
xSa

 tan x � tan a,  lim
xSa

 cot x � cot a,

2.4 Trigonometric Limits 89

y

y � ƒ(x)

y � h(x)

y � g(x)

a
x

FIGURE 2.4.1 Graph of f squeezed
between the graphs g and h

y

x

y � sin

�

1
x
1
�

1
�

FIGURE 2.4.2 Graph of function in
Example 2

Theorem 2.4.1 Squeeze Theorem

Suppose f, g, and h are functions for which for all x in an open interval
that contains a number a, except possibly at a itself. If

,

then lim
xSa

 f (x) � L.

lim
xSa

 g(x) � L and lim
xSa

 h(x) � L

g(x) � f (x) � h(x) A colleague from Russia said this
result was called the Two Soldiers
Theorem when he was in school.
Think about it.

Before applying Theorem 2.4.1, let us consider a trigonometric limit that does not exist.

EXAMPLE 2 A Limit That Does Not Exist
The limit does not exist. The function is odd but is not periodic.

The graph f oscillates between and 1 as :

.

For example, for or and for or
This means that near the origin the graph of f becomes so compressed that it

appears to be one continuous smear of color. See FIGURE 2.4.2.

EXAMPLE 3 Using the Squeeze Theorem

Find the limit .

Solution First observe that

because we have just seen in Example 2 that does not exist. But for we
have Therefore,

.�x2 � x2  sin 

1
x

� x2

�1 � sin(1>x) � 1.
x � 0lim

xS0
 sin(1>x)

lim
xS0

 x 2 sin 
1
x

� Q lim
xS0

 x 2R Q lim
xS0

 sin 

1
x
R

lim
xS0 

x2 sin 
1
x

x � 0.00063.
n � 501sin (1>x) � �1x � 0.00064,n � 500 sin (1>x) � 1

sin 
1
x

� �1 for 1
x

�
p

2
� np, n � 0, �1, �2, p

x S 0�1

f (x) � sin (1>x)lim
xS0

 sin (1>x)
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Now if we make the identifications and it follows from (1) of Section 2.2
that and Hence, from the Squeeze Theorem we conclude that

In FIGURE 2.4.3 note the small scale on the x- and y-axes.

lim
xS0 

x2 sin 

1
x

� 0.

lim
xS0 

h(x) � 0.lim
xS0 

g(x) � 0
h (x) � x2,g(x) � �x2

90 CHAPTER 2 Limit of a Function

0.01

0.005

�0.005

�0.01

0.1�0.1

y

y � x2

y � �x2

x

y � x2
sin

1
x

FIGURE 2.4.3 Graph of function in Example 3

An Important Trigonometric Limit Although the function is not defined at
the numerical table in Example 7 of Section 2.1 and the graph in FIGURE 2.4.4 suggests that

exists. We are now able to prove this conjecture using the Squeeze Theorem.
Consider a circle centered at the origin O with radius 1. As shown in FIGURE 2.4.5(a), let

the shaded region OPR be a sector of the circle with central angle t such that 
We see from parts (b), (c), and (d) of Figure 2.4.5 that

(6)

From Figure 2.4.5(b) the height of is and so

(7)

From Figure 2.4.5(d), or so that

(8)area of ^OQR �
1
2

 OR . QR �
1
2

. 1 . tan t �
1
2 tan t.

QR � tan t,QR>OR � tan t

area of ^OPR �
1
2

  OR . (height) �
1
2

. 1 . sin t �
1
2 sin t.

OP sin t � 1 . sin t � sin t,^OPR

area of ^OPR � area of sector OPR � area of ^OQR.

0 6 t 6 p>2.

lim
xS0 

(sin x)>x
x � 0,

f (x) � (sin x)>xy

x
���

sin x
xy �

FIGURE 2.4.4 Graph of f (x) � (sin x)>x

O R

P
Q

t

1

1

x

y

O

t

1

(a) Unit circle

1

FIGURE 2.4.5 Unit circle along with two triangles and a circular sector
(b) Triangle OPR

O R

P

1

t

O R

P

1

(c) Sector OPR

t

O R

Q

1

(d) Right triangle OQR

t
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Finally, the area of a sector of a circle is where r is its radius and is the central angle
measured in radians. Thus,

(9)

Using (7), (8), and (9) in the inequality (6) gives

From the properties of inequalities, the last inequality can be written

We now let in the last result. Since is “squeezed” between 1 and (which we
know from (5) is approaching 1), it follows from Theorem 2.4.1 that While we
have assumed the same result holds for when Using the
symbol x in place of t, we summarize the result:

(10)

As the following examples illustrate, the results in (1), (2), (3), and (10) are used often
to compute other limits. Note that the limit (10) is the indeterminate form .

EXAMPLE 4 Using (10)

Find the limit .

Solution We rewrite the fractional expression as two fractions with the same denominator x:

EXAMPLE 5 Using the Double-Angle Formula

Find the limit 

Solution To evaluate the given limit we make use of the double-angle formula 
of Section 1.4, and the fact the limits exist:

From (5) and (10) we know that and as and so the preceding
line becomes

lim
xS0

 
sin 2x

x
� 2 . 1 . 1 � 2.

x S 0,(sin x)>x S 1cos x S 1

 � 2 AlimxS0 
cos xB QlimxS0

 
sin x

x
R.

 � 2 lim
xS0 
Qcos x . sin x

x
R

 lim
xS0

 
sin 2x

x
� lim

xS0
 
2 cos x sin x

x

2 sin x cos x
sin 2x �

lim
xS0

 
sin 2x

x
.

 � 7.

 � 10 � 3 . 1

 � lim
xS0 

10 � 3 lim
xS0

 
sin x

x

 � lim
xS0

 
10x
x

� 3 lim
xS0

 
sin x

x

 lim
xS0

 
10x � 3 sin x

x
� lim

xS0
c 10x

x
�

3 sin x
x
d

lim
xS0

 

10x � 3 sin x
x

0>0

lim
xS0

 
sin x

x
� 1.

�p>2 6 t 6 0.t S 0�0 6 t 6 p>2,
(sin t)>t S 1.

cos t(sin t)>tt S 0�

cos t 6 sin t
t

6 1.

1
2 sin t 6 1

2 
t 6 1

2 tan t   or   1 6 t
sin t

6 1
cost

.

area of sector OPR �
1
2

. 12 . t �
1
2 t.

u1
2r

2u,
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since both limits exist, also cancel
the x in the first expression

now use (10)d

d
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EXAMPLE 6 Using (5) and (10)

Find the limit .

Solution Using and the fact that the limits exist we can write

Using a Substitution We are often interested in limits similar to that considered in Example 5.

But if we wish to find, say, the procedure employed in Example 5 breaks down at a

practical level since we do not have a readily available trigonometric identity for sin 5x. There

is an alternative procedure that allows us to quickly find where is any real

constant, by simply changing the variable by means of a substitution. If we let , then
Notice that as then necessarily Thus we can write

Thus we have proved the general result

(11)

From (11), with we get the same result obtained in Example 5.

EXAMPLE 7 Using a Substitution

Find the limit 

Solution Before beginning observe that the limit has the indeterminate form 
By factoring the given limit can be expressed as a limit of a
product:

(12)

Now if we let we see that implies Therefore,

Returning to (12), we can write

 � Qlim
xS1

 
1

x � 3
R Qlim

tS0
 
sin t

t
R

 � Q lim
xS1

 
1

x � 3
R Qlim

xS1
 
sin(x � 1)

x � 1
R

 lim
xS1

 
sin(x � 1)

x2 � 2x � 3
� lim

xS1
c 1
x � 3

. sin(x � 1)
x � 1

d

lim
xS1

 
sin(x � 1)

x � 1
� lim

tS0
 
sin t

t
� 1.

t S 0.x S 1t � x � 1,

lim
xS1

 
sin(x � 1)

x2 � 2x � 3
� lim

xS1
 

sin(x � 1)
(x � 3)(x � 1)

� lim
xS1
c 1
x � 3

. sin(x � 1)
x � 1

d .

x2 � 2x � 3 � (x � 3)(x � 1)
0>0 as x S 1.

lim
xS1

 
sin (x � 1)

x2 � 2x � 3
.

lim
xS0

 
sin 2x

x
� 2k � 2,

lim
xS0

 
sin kx

x
� k.

lim
xS0

 
sin kx

x
� lim

tS0
 
sin t
t>k � lim

tS0 
Qsin t

1
. k

t
R � k lim

tS0
 
sin t

t
� k.

t S 0.x S 0x � t>k.
t � kx

k � 0lim
xS0

 
sin kx

x
,

lim
xS0

 
sin 5x

x

 �
1
1

. 1 � 1.

 � Qlim
xS0

 
1

cos x
R Qlim

xS0
 
sin x

x
R

 � lim
xS0

 
1

cos x
. sin x

x

 lim
xS0

 
tan x

x
� lim

xS0
 
(sin x)>cos x

x

tan x � (sin x)>cos x

lim
xS0

 
tan x

x

92 CHAPTER 2 Limit of a Function

from (5) and (10)d

this limit is 1 from (10)

d

from (10)d

59957_CH02a_067-120.qxd  9/26/09  5:23 PM  Page 92

© Jones and Bartlett Publishers, LLC.  NOT FOR SALE OR DISTRIBUTION. 



since both limits exist. Thus,

EXAMPLE 8 Using a Pythagorean Identity

Find the limit 

Solution To compute this limit we start with a bit of algebraic cleverness by multiplying
the numerator and denominator by the conjugate factor of the numerator. Next we use the
fundamental Pythagorean identity in the form 

For the next step we resort back to algebra to rewrite the fractional expression as a product,
then use the results in (5):

Because we have

(13)

Since the limit in (13) is equal to 0, we can write

Dividing by then gives another important trigonometric limit:

(14)

FIGURE 2.4.6 shows the graph of We will use the results in (10) and (14)
in Exercises 2.7 and again in Section 3.4.

f (x) � (cos x � 1)>x.

lim
xS0

 
cos x � 1

x
� 0.

�1

lim
xS0

 
1 � cos x

x
� lim

xS0
 
�(cos x � 1)

x
� (�1)lim

xS0
 
cos x � 1

x
� 0.

lim
xS0

 
1 � cos x

x
� 0.

lim
xS0

(sin x)>(1 � cos x) � 0>2 � 0

 � Q lim
xS0

 
sin x

x
R . Q lim

xS0
 

sin x
1 � cos x

R.
 � lim

xS0
 Qsin x

x
. sin x

1 � cos x
R

 lim
xS0

 
1 � cos x

x
� lim

xS0
 

sin2 x
x(1 � cos x)

 � lim
xS0

 
sin2x

x(1 � cos x)
.

 � lim
xS0

 
1 � cos2x

x(1 � cos x)

 lim
xS0

 
1 � cos x

x
� lim

xS0
 
1 � cos x

x
. 1 � cos x

1 � cos x

1 � cos2
 x � sin2

 x:sin2
 x � cos2

 x � 1

lim
xS0

 

1 � cos x
x

.

lim
xS1

 
sin (x � 1)

x2 � 2x � 3
� Qlim

xS1
 

1
x � 3

R Qlim
tS0

 
sin t

t
R �

1
4

. 1 �
1
4

.
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y
1

�1

x
2� 

�2� 

y �
cos x �1

x

FIGURE 2.4.6 Graph of
f (x) � (cos x � 1)>x

Exercises 2.4 Answers to selected odd-numbered problems begin on page ANS-000.

Fundamentals

In Problems 1–36, find the given limit, or state that it does not
exist.

1. 2.

3. 4.

5. 6. lim
xS0

 
tan x
3x

lim
xS0

 
cos 2x
cos 3x

lim
xS0

 
1 � sin x
1 � cos x

lim
xS0

 
sin x

4 � cos x

lim
tS0

 
sin (�4t)

t
lim
tS0

 
sin 3t

2t

7. 8.

9. 10.

11. 12.

13. 14. lim
xS2p

 

x � 2p
sin x

lim
xS1

 
sin(x � 1)

2x � 2

lim
tS0

 
t3

sin2 3t
lim
tS0

 
sin2 6t

t2

lim
tS0

 
sin2

 (t>2)

sin t
lim
tS0

 
2 sin2 t
t cos2 t

lim
tS0 

5t cot 2tlim
tS0

 
1

t sec t csc 4t
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15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. Suppose Use (10) and (14) of this section
along with (17) of Section 1.4 to find the limit:

.

38. Suppose Use (10) and (14) of this section
along with (18) of Section 1.4 to find the limit:

.lim
hS0

 
f   Qp

6
� hR � f Qp

6
R

h

f (x) � cos x.

lim
hS0

 
f  Qp

4
� hR � f  Qp

4
R

h

f (x) � sin x.

lim
xSp>4 

cos 2x
cos x � sin x

lim
xSp>4 

1 � tan x
cos x � sin x

lim
xS0

 
4x2 � 2 sin x

x
lim
xS0

 
2 sin 4x � 1 � cos x

x

lim
xS3

 
x2 � 9

sin(x � 3)
lim
xS2

 
sin(x � 2)

x2 � 2x � 8

lim
tS0

 
t 2

1 � cos t
lim
xS0

 
sin 5x2

x2

lim
xS0

 
sin x � tan x

x
lim
xS0

 
cos x � 1
cos2x � 1

lim
xS0

 
(1 � cos x)2

x
lim

xS0�

(x � 21sin x)2

x

lim
tS0

 
cos 4t
cos 8t

lim
tS0

 
t2 � 5t sin t

t2

lim
tS 0�

1 � cos1t
1t

lim
tS0�

sin t
1t

lim
tS0

 sin 2t csc 3tlim
tS0

 
sin 3t
sin 7t

lim
xS �2

sin(5x � 10)
4x � 8

lim
xS0

 
cos(3x � p>2)

x

lim
uSp>2

1 � sin u

cos u
lim
xS0

 
cos x

x

94 CHAPTER 2 Limit of a Function

In Problems 39 and 40, use the Squeeze Theorem to establish
the given limit.

39. 40.

41. Use the properties of limits given in Theorem 2.2.3 to
show that

(a) (b)

42. If for all x in an interval containing 0, show
that 

In Problems 43 and 44, use the Squeeze Theorem to evaluate
the given limit.

43. where 

44. where 

Think About It

In Problems 45–48, use an appropriate substitution to find the
given limit.

45. 46.

47. 48.

49. Discuss: Is the function

continuous at 0?

50. The existence of does not imply the existence of

. Explain why the second limit fails to exist.lim
xS0

 
sin 0 x 0

x

lim
xS0

 
sin x

x

f (x) � •
sin x

x
, x � 0

1, x � 0

lim
xS2

 

cos(p>x)

x � 2
lim
xS1

 

sin (p>x)

x � 1

lim
xSp

 
x � p

tan 2x
lim

xSp>4 
sin x � cos x

x � p>4

0 f (x) � 1 0 � x2, x � 0lim
xS0  

f (x)

2x � 1 � f (x) � x2 � 2x � 3, x � 2lim
xS2  

f (x)

lim
xS0 

x2f (x) � 0.
0 f (x) 0 � B

lim
xS0  

x2 sin2
 
1
x

� 0.lim
xS0  

x3 sin 

1
x

� 0

lim
xS0 

x2 cos 
p

x
� 0lim

xS0 

 x sin 
1
x

� 0

2.5 Limits That Involve Infinity
Introduction In Sections 1.2 and 1.3 we considered some functions whose graphs pos-

sessed asymptotes. We will see in this section that vertical and horizontal asymptotes of a graph
are defined in terms of limits involving the concept of infinity. Recall, the infinity symbols,

(“minus infinity”) and (“infinity”), are notational devices used to indicate, in turn, that
a quantity becomes unbounded in the negative direction (in the Cartesian plane this means to the
left for x and downward for y) and in the positive direction (to the right for x and upward for y).

Although the terminology and notation used when working with is standard, it is
nevertheless a bit unfortunate and can be confusing. So let us make it clear at the outset that
we are going to consider two kinds of limits. First, we are going to examine

• infinite limits.

The words infinite limit always refer to a limit that does not exist because the function f exhibits
unbounded behavior: or Next, we will consider

• limits at infinity.

f (x) S q.f (x) S �q

�q

q�qSome texts use the symbol and
the words plus infinity instead of 
and infinity.

q
�q
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2.5 Limits That Involve Infinity 95

The words at infinity mean that we are trying to determine whether a function f possesses a
limit when the variable x is allowed to become unbounded: or Such limits
may or may not exist.

Infinite Limits The limit of a function f will fail to exist as x approaches a number a when-
ever the function values increase or decrease without bound. The fact that the function values

increase without bound as x approaches a is denoted symbolically by 

or (1)

If the function values decrease without bound as x approaches a, we write

or (2)

Recall, the use of the symbol signifies that f exhibits the same behavior—in this
instance, unbounded behavior—from both sides of the number a on the x-axis. For example,
the notation in (1) indicates that

and

See FIGURE 2.5.1.

Similarly, FIGURE 2.5.2 shows the unbounded behavior of a function f as x approaches a
from one side. Note in Figure 2.5.2(c), we cannot describe the behavior of f near a using just
one limit symbol.

In general, any limit of the six types

(3)

is called an infinite limit. Again, in each case of (3) we are simply describing in a symbolic
manner the behavior of a function f near the number a. None of the limits in (3) exist.

In Section 1.3 we reviewed how to identify a vertical asymptote for the graph of a rational
function We are now in a position to define a vertical asymptote of any
function in terms of the limit concept.

f (x) � p(x)>q(x).

 lim
xSa 

f (x) � �q,   lim
xSa  

f (x) � q,

 lim
xSa�

f (x) � �q,   lim
xSa�

f (x) � q,

 lim
xSa�

f (x) � �q,   lim
xSa�

f (x) � q,

y

x

y � ƒ(x)

x � a

(a) lim ƒ(x) � �
x → a�

x � a

y

y �ƒ(x)

x → a�
(b) lim ƒ(x) � ��

x

x � a

y

x

y �ƒ(x)

(c) lim ƒ(x) � � and lim ƒ(x) � ��
x → a� x → a�

FIGURE 2.5.2 Three more types of infinite limits

x � a

y

x

y �ƒ(x)

(a) lim ƒ(x) � �
x → a

y � ƒ(x)

x � a

x

y

(b) lim ƒ(x) � ��
x → a

FIGURE 2.5.1 Two types of infinite limits

f (x) S q as x S a�.f (x) S q as x S a�

x S a

lim
xSa 

f (x) � �q.f (x) S �q as x S a

lim
xSa 

f (x) � q.f (x) S q as x S a

f (x)

x S q.x S �q
Throughout the discussion, bear in
mind that and do not repre-
sent real numbers and should never
be manipulated arithmetically like a
number.

q�q
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96 CHAPTER 2 Limit of a Function

In the review of functions in Chapter 1 we saw that the graphs of rational functions often
possess asymptotes. We saw that the graphs of the rational functions and 
were similar to the graphs in Figure 2.5.2(c) and Figure 2.5.1(a), respectively. The y-axis,
that is, is a vertical asymptote for each of these functions. The graphs of

and (4)

are obtained by shifting the graphs of and horizontally units. As seen
in FIGURE 2.5.3, is a vertical asymptote for the rational functions in (4). We have

and (5)

and (6)

The infinite limits in (5) and (6) are just special cases of the following general result:

and (7)

for n an odd positive integer, and

(8)

for n an even positive integer. As a consequence of (7) and (8), the graph of a rational func-
tion either resembles the graph in Figure 2.5.3(a) for n odd or that in Figure
2.5.3(b) for n even.

For a general rational function , where p and q have no common fac-
tors, it should be clear from this discussion that when q contains a factor n a pos-
itive integer, then the shape of the graph near the vertical line must be either one of
those shown in Figure 2.5.3 or its reflection in the x-axis.

EXAMPLE 1 Vertical Asymptotes of a Rational Function
Inspection of the rational function

shows that and are vertical asymptotes for the graph of f. Since the denomi-
nator contains the factors and we expect the graph of f near the line

to resemble Figure 2.5.3(a) or its reflection in the x-axis, and the graph near 
to resemble Figure 2.5.3(b) or its reflection in the x-axis.

For x close to 0, from either side of 0, it is easily seen that But, for x close
to say and we have and respectively. Using the
additional information that there is only a single x-intercept we obtain the graph of
f in FIGURE 2.5.4.

EXAMPLE 2 One-Sided Limit
In Figure 1.6.6 we saw that the y-axis, or the line , is a vertical asymptote for the nat-
ural logarithmic function since

lim
xS0�

 

ln x � �q.

f (x) � ln x
x � 0

(�2, 0),
f (x) 6 0,f (x) 7 0x � �3.9,x � �4.1�4,

f (x) 7 0.

x � 0x � �4
(x � 0)2(x � (�4))1

x � 0x � �4

f (x) �
x � 2

x2(x � 4)

x � a
(x � a)n,

f (x) � p(x)>q(x)

y � 1>(x � a)n

lim
xSa

 
1

(x � a)n � q,

lim
xSa�

 

1
(x � a)n � q,lim

xSa�
 

1
(x � a)n � �q

lim
xSa

 
1

(x � a)2
� q.

lim
xSa�

 

1
x � a

� qlim
xSa�

 

1
x � a

� �q

x � a
0a 0y � 1>x2y � 1>x

y �
1

(x � a)2
y �

1
x � a

x � 0,

y � 1>x2y � 1>x

(b)

x � a

y

x

y �
1

( x � a)
2

x � a

y

(a)

x

y �
1

x � a

FIGURE 2.5.3 Graphs of functions in (4)

y

x
1

1

x ��4 x �0

y �
x � 2

x2
(x � 4)

FIGURE 2.5.4 Graph of function in
Example 1

Definition 2.5.1 Vertical Asymptote

A line is said to be a vertical asymptote for the graph of a function f if at least one
of the six statements in (3) is true.

x � a

See Figure 1.2.1.
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The graph of the logarithmic function is the graph of shifted 3 units
to the left. Thus is a vertical asymptote for the graph of since

EXAMPLE 3 One-Sided Limit

Graph the function .

Solution Inspection of f reveals that its domain is the interval and the y-intercept
is (0, 0). From the accompanying table we conclude that f decreases

(�2, q)

f (x) �
x

1x � 2

lim
xS�3�

ln(x � 3) � �q.
y � ln(x � 3)x � �3

f (x) � ln xy � ln(x � 3)

2.5 Limits That Involve Infinity 97

y

x

x ��2

y �
x

x � 2

FIGURE 2.5.5 Graph of function in
Example 3

x S �2� �1.9 �1.99 �1.999 �1.9999

f (x) �6.01 �19.90 �63.21 �199.90

without bound as x approaches from the right:

Hence, the line is a vertical asymptote. The graph of f is given in FIGURE 2.5.5.

Limits at Infinity If a function f approaches a constant value L as the independent variable
x increases without bound or as x decreases without bound, then we write

or (9)

and say that f possesses a limit at infinity. Here are all the possibilities for limits at infinity
and :

• One limit exists but the other does not,
• Both and exist and equal the same number,

• Both and exist but are different numbers,

• Neither nor exists.

If at least one of the limits exists, say, , then the graph of f can be made arbi-
trarily close to the line as x increases in the positive direction.y � L

lim
xSq  

f (x) � L

lim
xSq 

f (x)lim
xS�q 

f (x)

lim
xSq 

f (x)lim
xS�q 

f (x)

lim
xSq 

f (x)lim
xS�q 

f (x)

lim
xSq 

f (x)lim
xS�q 

f (x)

lim
xSq 

f (x) � Llim
xS�q 

f (x) � L

(x S �q)(x S q)

x � �2

lim
xS�2�

f (x) � �q.

�2

Definition 2.5.2 Horizontal Asymptote

A line is said to be a horizontal asymptote for the graph of a function f if at least
one of the two statements in (9) is true.

y � L

In FIGURE 2.5.6 we have illustrated some typical horizontal asymptotes. We note, in con-
junction with Figure 2.5.6(d) that, in general, the graph of a function can have at most two
horizontal asymptotes but the graph of a rational function can have at most
one. If the graph of a rational function f possesses a horizontal asymptote , then its end
behavior is as shown in Figure 2.5.6(c), that is:

f (x) S L as  x S �q  and  f (x) S L as x S q.

y � L
f (x) � p(x)>q(x)

y � L

y

x

(a) ƒ(x) → L as x → �

y � L

y

x

(b) ƒ(x) → L as x → ��

y � L

y

x

(c) ƒ(x) → L as x → ��,

    ƒ(x) → L as x → �

y � L1

y � L2

y

x

(d) ƒ(x) → L1 as x → ��,

    ƒ(x) → L2 as x → �
FIGURE 2.5.6 is a horizontal asymptote in (a), (b), and (c); and are horizontal asymptotes in (d)y � L2y � L1y � L
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98 CHAPTER 2 Limit of a Function

For example, if x becomes unbounded in either the positive or negative direction, the
functions in (4) decrease to 0 and we write

(10)

In general, if r is a positive rational number and if is defined, then

(11)

EXAMPLE 4 Horizontal and Vertical Asymptotes

The domain of the function is the interval In view of (11) we can write

Note that we cannot consider the limit of f as because the function is not defined for
Nevertheless is a horizontal asymptote. Now from infinite limit

we conclude that is a vertical asymptote for the graph of f. See FIGURE 2.5.7.

In general, if then the following table summarizes the limit results for
the forms , and . The symbol L denotes a real number.lim

xS�q
F(x)lim

xSa  

F(x), lim
xSq

F(x)
F(x) � f (x)>g(x),

x � 2

lim
xS2�

4
12 � x

� q

y � 0x � 2.
x S q

lim
xS�q

4
12 � x

� 0.

(�q, 2).f (x) �
4

12 � x

lim
xS�q

  

1
(x � a)r � 0  and  lim

xSq
  

1
(x � a)r � 0.

(x � a)r

lim
xS�q

 

1
x � a

� 0, lim
xS q

 

1
x � a

� 0  and  lim
xS�q

1
(x � a)2

� 0, lim
xSq

 

1
(x � a)2

� 0.

Limits of the form or are said to be infinite limits at 

infinity. Furthermore, the limit properties given in Theorem 2.2.3 hold by replacing the sym-
bol a by or provided the limits exist. For example,

and (13)

whenever and exist. In the case of the limit of a quotient we must also have

.

End Behavior In Section 1.3 we saw that how a function f behaves when is very large is
its end behavior. As already discussed, if , then the graph of f can be made arbi-
trarily close to the line for large positive values of . The graph of a polynomial function,

resembles the graph of for very large. In other words, for

(14)

the terms enclosed in the blue rectangle in (14) are irrelevant when we look at a graph of a
polynomial globally—that is, for large. Thus we have

(15)

where (15) is either or depending on an and n. In other words, the limit in (15) is
an example of an infinite limit at infinity.

�qq

lim
xS�q

anxn � lim
xS�q

(anxn � an�1xn�1 � . . . � a1x � a0),
0x 0

f (x) � anxn � an�1xn�1 � . . . � a1x � a0

0x 0y � anxn

f (x) � an 
xn � an�1xn�1 � . . . � a2x2 � a1x � a0,

xy � L
lim
xSq 

f (x) � L
0x 0

lim
xSq

g(x) � 0

lim
xSq

g(x)lim
xSq 

f (x)

lim
xSq

 

f (x)
g(x)

�
lim
xSq  

f (x)

lim
xSq

g(x)
 ,lim

xSq 

f (x)g(x) � ( lim
xSq 

f (x))( lim
xSq

g (x)) 

�qq

lim
xS�q

F(x) � �qlim
xSq

F(x) � �q

These results are also true when 
is replaced by provided 
is defined.

(a � x)ra � x,
x � a

y

x
x � 2y � 0

y �
 4

1

1

2 � x

FIGURE 2.5.7 Graph of function in
Example 4

limit form:
x S a, q, �q

L
�q

�q
L

, L � 0
L
0

, L � 0

limit is: 0 infinite infinite
(12)
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2.5 Limits That Involve Infinity 99

EXAMPLE 5 Limit at Infinity

Evaluate .

Solution We cannot apply the limit quotient law in (13) to the given function, since
and . However, by dividing the numerator 

and the denominator by x4, we can write

This means the line is a horizontal asymptote for the graph of the function.

Alternative Solution In view of (14), we can discard all powers of x other than the highest:

discard terms in the blue boxes

EXAMPLE 6 Infinite Limit at Infinity

Evaluate 

Solution By (14),

In other words, the limit does not exist.

EXAMPLE 7 Graph of a Rational Function

Graph the function 

Solution Inspection of the function f reveals that its graph is symmetric with respect to the
y-axis, the y-intercept is (0, 0), and the vertical asymptotes are and . Now, from
the limit

we conclude that the line is a horizontal asymptote. The graph of f is given in
FIGURE 2.5.8.

Another limit law that holds true for limits at infinity is that the limit of an nth root of
a function is the nth root of the limit, whenever the limit exists and the nth root is defined.
In symbols, if , then

(16)

provided when n is even. The result also holds for x S �q.L � 0

lim
xSq

 1
n g(x) � 1

n lim
xSq

 g(x) � 1
n L ,

lim
xSq

g(x) � L

y � �1

lim
xSq 

f (x) � lim
xSq

 

x2

1 � x2
� lim

xSq
 

x2

�x2
� � lim

xSq
1 � �1

x � 1x � �1

f (x) �
x2

1 � x2
.

lim
xSq

 

1 � x3

3x � 2
� lim

xSq
 

�x3

3x
� �

1
3

lim
xSq

x2 � �q.

lim
xSq

  

1 � x3

3x � 2
.

lim
xSq

�6x4 � x2 � 1
2x4 � x

� lim
xSq 

�6x4

2x4
� lim

xSq
 

�6
2

� �3.

T

y � �3

 �
�6 � 0 � 0

2 � 0
� �3.

 �

lim
xSq
c�6 � Q 1

x2R � Q 1
x4R d

lim
xSq
c2 � Q 1

x3R d

 lim
xSq

�6x4 � x2 � 1
2x4 � x

� lim
xSq

�6 � Q 1
x2R � Q 1

x4R
2 � Q 1

x3R

lim
xSq

(2x4 � x) � qlim
xSq

(�6x4 � x2 � 1) � �q

lim
xSq

 

�6x4 � x2 � 1
2x4 � x

Limit of the numerator
and denominator both
exist and the limit of
the denominator is not
zero

d

y

x
y � �1

x ��1 x �1

y �
 x2

1 � x2

FIGURE 2.5.8 Graph of function in
Example 7
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EXAMPLE 8 Limit of a Square Root

Evaluate 

Solution Because the limit of the rational function inside the radical exists and is positive,
we can write

EXAMPLE 9 Graph with Two Horizontal Asymptotes

Determine whether the graph of has any horizontal asymptotes.

Solution Since the function is not rational, we must investigate the limit of f as and
as First, recall from algebra that is nonnegative, or more to the point,

We then rewrite f as

The limits of f as and as are, respectively,

and

Thus the graph of f has two horizontal asymptotes and . The graph of f, which
is similar to Figure 2.5.6(d), is given in FIGURE 2.5.9.

In the next example we see that the form of the given limit is but the limit
exists and is not 0.

EXAMPLE 10 Using Rationalization

Evaluate .

Solution Because is an even function (verify that
) with domain , if exists it must be the same as We

first rationalize the numerator:

 � lim
xSq

 

�7x2 � 1

x2 � 2x4 � 7x2 � 1
.

 � lim
xSq

 

x4 � (x4 � 7x2 � 1)

x2 � 2x4 � 7x2 � 1

 lim
xSq

 Ax2 � 2x4 � 7x2 � 1 B � lim
xSq

  

Ax2 � 2x4 � 7x2 � 1 B
1

. ax2 � 2x4 � 7x2 � 1

x2 � 2x4 � 7x2 � 1
b

lim
xS�q

 f (x).lim
xSq

 f (x)(�q, q)f (�x) � f (x)
f (x) � x2 � 2x4 � 7x2 � 1

lim
xSq

(x2 � 2x4 � 7x2 � 1)

q � q,

y � �5y � 5

lim
xS�q  

f (x) � lim
xS�q

 

5x0x 0
A

1 �
4
x2

� lim
xS�q

5x
�x

A
1 �

4
x2

�
lim

xS�q
(�5)

A
lim

xS�qQ1 �
4
x 2R

�
�5
1

� �5.

lim
xSq 

f (x) � lim
xSq

 

5x0x 0
A

1 �
4
x2

� lim
xSq

 

5x
x

A
1 �

4
x2

�
lim
xSq

5

A
lim
xSq
Q1 �

4
x2
R

�
5
1

� 5,

x S �qx S q

f (x) �

5x

2x2

2x2 � 4

2x2

�

5x0x 0
2x2 � 4

2x2

�

5x0x 0
A

1 �
4
x2

.

2x2 � 0x 0 � e x,
�x,

x � 0
x 6 0.

2x2x S �q.
x S q

f (x) �
5x

2x2 � 4

lim
xSqA

2x3 � 5x2 � 4x � 6
6x3 � 2x

�
A

lim
xSq

2x3 � 5x2 � 4x � 6
6x3 � 2x

�
A

lim
xSq

 

2x3

6x3
�

A

1
3

�
1
13

.

lim
xSqA

2x3 � 5x2 � 4x � 6
6x3 � 2x

.

100 CHAPTER 2 Limit of a Function

y

x

y � �5

y � 5

y �
 5x

x2 � 4

FIGURE 2.5.9 Graph of function in
Example 9
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Next, we divide the numerator and denominator by :

With the help of a CAS, the graph of the function f is given in FIGURE 2.5.10. The line
is a horizontal asymptote. Note the symmetry of the graph with respect to the 

y-axis.

When working with functions containing the natural exponential function, the following
four limits merit special attention:

(17)

As discussed in Section 1.6 and verified by the second and third limit in (17), is a hor-
izontal asymptote for the graphs of and See FIGURE 2.5.11.

EXAMPLE 11 Graph with Two Horizontal Asymptotes

Determine whether the graph of has any horizontal asymptotes.

Solution Because f is not a rational function, we must examine and 
First, in view of the third result given in (17) we can write

Thus is a horizontal asymptote. Now, because it follows from the table
in (12) that

Therefore is a horizontal asymptote. The graph of f is given in FIGURE 2.5.12.

Composite Functions Theorem 2.3.3, the limit of a composite function, holds when a is
replaced by or and the limit exists. For example, if and f is continuous
at L, then

(18)

The limit result in (16) is just a special case of (18) when The result in (18) also
holds for Our last example illustrates (18) involving a limit at .qx S �q.

f (x) � 1
n

x.

lim
xSq 

f (g(x)) � f ( lim
xSq 

g (x)) � f (L).

lim
xSq 

g(x) � Lq�q  

y � 0

lim
xS�q

 

6
1 � e�x � 0.

lim
xS�q

e�x � qy � 6

lim
xSq

 
6

1 � e�x �
lim
xSq

6

lim
xSq

(1 � e�x)
�

6
1 � 0

� 6.

lim
xS�q 

f (x).lim
xSq 

f (x)

f (x) �
6

1 � e�x

y � e�x.y � ex
y � 0

lim
xSq

ex � q, lim
xS�q

ex � 0, lim
xSq

e�x � 0, lim
xS�q

e�x � q.

y � �7
2

 �
�7

1 � 1
� �

7
2

.

 �

lim
xSq 
a�7 �

1
x2
b

lim
xSq

1 �
B

lim
xSq 
a1 �

7
x2

�
1
x4
b

 � lim
xSq

 
�7 �

1
x2

1 �
B

1 �
7
x2

�
1
x4

 lim
xSq

 
�7x2 � 1

x2 � 2x4 � 7x2 � 1
� lim

xSq
 

�7x2

2x4
�

1

2x4

x2 � 2x4 � 7x2 � 1

2x4

2x4 � x2

2.5 Limits That Involve Infinity 101

y

x

y � x2 � x4 � 7x2 � 1

y � �  
7

2

1

1

FIGURE 2.5.10 Graph of function in
Example 10

y

(0, 1)

x
y � 0

horizontal

asymptote

y � 0

horizontal

asymptote

y � exy � e�x

FIGURE 2.5.11 Graphs of exponential
functions

y

x
1

1

y � 0

y � 6

y �
6

1 � e�x

FIGURE 2.5.12 Graph of function in
Example 11
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EXAMPLE 12 A Trigonometric Function Revisited

In Example 2 of Section 2.4 we saw that does not exist. However, the limit at 
infinity, exists. By (18) we can write

As we see in FIGURE 2.5.13, is a horizontal asymptote for the graph of 
You should compare this graph with that given in Figure 2.4.2.

f (x) � sin(1>x).y � 0

lim
xSq 

sin 

1
x

� sin a lim
xSq

 
1
x
b � sin 0 � 0.

lim
xSq

sin (1>x),
lim
xS0 

sin(1>x)

102 CHAPTER 2 Limit of a Function

y � 0

y

x

y � sin
1
x

FIGURE 2.5.13 Graph of function in
Example 12

Exercises 2.5 Answers to selected odd-numbered problems begin on page ANS-000.

Fundamentals

In Problems 1–24, express the given limit as a number, as 
or as 

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

In Problems 25–32, find and for the given
function f.

25. 26.

27. 28. f (x) �
�5x2 � 6x � 3

2x4 � x2 � 1
f (x) �

2x � 1

23x2 � 1

f (x) �
29x2 � 6

5x � 1
f (x) �

4x � 1

2x2 � 1

lim
xSq

 f (x)lim
xS�q

 f (x)

lim
xSq

ln a x
x � 8

blim
xS�q

 sin�1 a x

24x2 � 1
b

lim
xS�q

sin a px
3 � 6x

blim
xSq

 cosQ5
x
R

lim
xSq

(2x2 � 5x � x)lim
xSq 

(x � 2x2 � 1 )
lim

xS�q
 
B

3 2x � 1
7 � 16x

lim
xSqA

3x � 2
6x � 8

lim
xSq 
a x

3x � 1
b a4x2 � 1

2x2 � x
b3

lim
xSq
a 3x

x � 2
�

x � 1
2x � 6

b

lim
xS�q

 
1 � 713 x

213 x
lim
xSq

8 � 2x

1 � 42x

lim
xS�q

 a 6

1
3 x

�
1

1
5 x
blim

xSq 
Q5 �

2
x4
R

lim
xSq

x2

1 � x�2
lim
xSq

 

x2 � 3x
4x2 � 5

lim
xSp�

csc xlim
xS0�

2 � sin x
x

lim
xS0�

�1

2x
lim
xS1

 

1
(x � 1)4

lim
xS2�

 

10
x2 � 4

lim
xS�4�

 

2
(x � 4)3

lim
xS6

 

4
(x � 6)2

lim
xS5�

 

1
x � 5

q.
�q,

29. 30.

31. 32.

In Problems 33–42, find all vertical and horizontal asymptotes
for the graph of the given function. Sketch the graph.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

In Problems 43–46, use the given graph to find:

(a) (b)

(c) (d)

43.

FIGURE 2.5.14 Graph for Problem 43

44.

FIGURE 2.5.15 Graph for Problem 44

y

y � ƒ(x)

x

y

y � ƒ(x)

x

lim
xSq

  f (x)lim
xS�q

  f (x)

lim
xS2�

  

f (x)lim
xS2� 

f (x)

f (x) �
x � 3

2x2 � 1
f (x) �

x � 2

2x2 � 1

f (x) �
1 � 1x

1x
f (x) �

A

x
x � 1

f (x) �
4x2

x2 � 4
f (x) �

1
x2(x � 2)

f (x) �
x2 � x
x2 � 1

f (x) �
x2

x � 1

f (x) �
x

x2 � 1
f (x) �

1
x2 � 1

f (x) �
04x 0 � 0x � 1 0

x
f (x) �

0x � 5 0
x � 5

f (x) � 1 �
2e�x

ex � e�xf (x) �
ex � e�x

ex � e�x

59957_CH02b_067-120.qxd  9/26/09  5:25 PM  Page 102

© Jones and Bartlett Publishers, LLC.  NOT FOR SALE OR DISTRIBUTION. 



45.

FIGURE 2.5.16 Graph for Problem 45

46.

FIGURE 2.5.17 Graph for Problem 46

In Problems 47–50, sketch a graph of a function f that satisfies
the given conditions.

47.

48.

49.

50.

51. Use an appropriate substitution to evaluate

.

52. According to Einstein’s theory of relativity, the mass m of
a body moving with velocity is 
where m0 is the initial mass and c is the speed of light.
What happens to m as 

Calculator/CAS Problems

In Problems 53 and 54, use a calculator or CAS to investigate
the given limit. Conjecture its value.

53. 54.

55. Use a calculator or CAS to obtain the graph of 
Use the graph to conjecture the values of as

(a) , (b) , and (c) .

56. (a) A regular n-gon is an n-sided polygon inscribed in a
circle; the polygon is formed by n equally spaced
points on the circle. Suppose the polygon shown in

x S qx S 0x S �1�

f (x)(1 � x)1>x.
f (x) �

lim
xSq 
acos 

1
x
bx

lim
xSq 

x2 sin 

2
x2

yS c�?

m � m0>21 � y2>c2,y

lim
xSq 

x sin 

3
x

lim
xS�q  

f (x) � 0, lim
xSq  

f (x) � 0

lim
xS1� 

f (x) � 2, lim
xS1� 

f (x) � �q,  f  A32B � 0,  f (3) � 0,

lim
xS2 

f (x) � q, lim
xS�q  

f (x) � q, lim
xSq  

f (x) � 1

f (0) � 1, lim
xS�q 

f (x) � 3, lim
xSq 

f (x) � �2

lim
xS1�  

f (x) � �q, lim
xS1�

 
 
f (x) � �q, f (2) � 0, lim

xSq 
 f (x) � 0

x

y

y � ƒ(x)

y

x

y � ƒ(x) FIGURE 2.5.18 represents a regular n-gon inscribed in a
circle of radius r. Use trigonometry to show that the
area of the n-gon is given by

.

(b) It stands to reason that the area A(n) approaches the
area of the circle as the number of sides of the n-gon
increases. Use a calculator to compute A(100) and
A(1000).

(c) Let in A(n) and note that as then
Use (10) of Section 2.4 to show that 

FIGURE 2.5.18 Inscribed n-gon 
for Problem 56

Think About It

57. (a) Suppose and Show that

(b) What does the result in part (a) indicate about the
graphs of f and g where is large?

(c) If possible, give a name to the function g.

58. Very often students and even instructors will sketch
vertically shifted graphs incorrectly. For example, the
graphs of and are incorrectly drawn in
FIGURE 2.5.19(a) but are correctly drawn in Figure 2.5.19(b).
Demonstrate that Figure 2.5.19(b) is correct by showing
that the horizontal distance between the two points P and
Q shown in the figure approaches 0 as 

FIGURE 2.5.19 Graphs for Problem 58

y

x

(a) Incorrect

x

y

P Q

horizontal

line

(b) Correct

x S q.

y � x2 � 1y � x2

0x 0

lim
xS � q

[ f (x) � g(x)] � 0.

g(x) � x � 1.f (x) � x2>(x � 1)

x

y

r
��n

pr 2.
lim

nSq 
A(n) �x S 0.

n S qx � 2p>n

A (n) �
n
2

 r2
 sin a2p

n
b

A(n)
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2.6 Limits—A Formal Approach
Introduction In the discussion that follows we will consider an alternative approach to the no-

tion of a limit that is based on analytical concepts rather than on intuitive concepts. A proof of
the existence of a limit can never be based on one’s ability to sketch graphs or on tables of nu-
merical values. Although a good intuitive understanding of is sufficient for proceeding 
with the study of the calculus in this text, an intuitive understanding is admittedly too vague to be

lim
xSa 

f  (x)
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of any use in proving theorems. To give a rigorous demonstration of the existence of a limit, or
to prove the important theorems of Section 2.2, we must start with a precise definition of a limit.

Limit of a Function Let us try to prove that by elaborating on the 

following idea: “If can be made arbitrarily close to 10 by taking x sufficiently
close to 2, from either side but different from 2, then ” We need to make the 

concepts of arbitrarily close and sufficiently close precise. In order to set a standard of arbitrary
closeness, let us demand that the distance between the numbers and 10 be less than 0.1; that is,

(1)

Then, how close must x be to 2 to accomplish (1)? To find out, we can use ordinary algebra
to rewrite the inequality

as . Adding across this simultaneous inequality then gives

Using absolute values and remembering that we can write the last inequality as
Thus, for an “arbitrary closeness to 10” of 0.1, “sufficiently close to 2”

means within 0.05. In other words, if x is a number different from 2 such that its distance
from 2 satisfies then the distance of from 10 is guaranteed to satisfy

Expressed in yet another way, when x is a number different from 2 but in
the open interval (1.95, 2.05) on the x-axis, then is in the interval (9.9, 10.1) on the y-axis.

Using the same example, let us try to generalize. Suppose (the Greek letter epsilon)
denotes an arbitrary positive number that is our measure of arbitrary closeness to the num-
ber 10. If we demand that

(2)

then from and algebra, we find

(3)

Again using absolute values and remembering that we can write the last inequality in
(3) as

. (4)

If we denote by the new symbol (the Greek letter delta), (2) and (4) can be written as

whenever

Thus, for a new value for say tells us the corresponding
closeness to 2. For any number x different from 2 in (1.9995, 2.0005),* we can be sure 
is in (9.999, 10.001). See FIGURE 2.6.1.

A Definition The foregoing discussion leads us to the so-called definition of a limit.e � d

f (x)
e � 0.001, d � e>2 � 0.0005e,

0 6 0 x � 2 0 6 d.0 f (x) � 10 0 6 e

de>2
0 6 0 x � 2 0 6 e

2

x � 2,

2 �
e

2
6 x 6 2 �

e

2
  or  �

e

2
6 x � 2 6 e

2
.

10 � e 6 2x � 6 6 10 � e

0 f (x) � 10 0 6 e  or  10 � e 6 f (x) 6 10 � e,

e

f (x)
0 f (x) � 10 0 6 0.1.

f (x)0x � 2 0 6 0.05,

0 6 0x � 2 0 6 0.05.
x � 2,

�0.05 6 x � 2 6 0.05.

�21.95 6 x 6 2.05

9.9 6 2x � 6 6 10.1

0 f (x) � 10 0 6 0.1  or  9.9 6 f (x) 6 10.1.

f (x)

lim
xS2

 f (x) � 10.
f (x) � 2x � 6

lim
xS2 

(2x � 6) � 10

104 CHAPTER 2 Limit of a Function

*For this reason, we use rather than Keep in mind when considering we do
not care about f at 2.

lim
xS2 

f (x),0 x � 2 0 6 d.0 6 0 x � 2 0 6 d

y � 2x � 6y

ƒ(x)
10

10 ��

10 ��

2 � � 2 � �2
x x

FIGURE 2.6.1 is in 
whenever x is in (2 � d, 2 � d), x � 2

(10 � e, 10 � e)f (x)

Definition 2.6.1 Definition of a Limit

Suppose a function f is defined everywhere on an open interval, except possibly at a
number a in the interval. Then

means that for every there exists a number such that

whenever 0 6 0x � a 0 6 d.0 f (x) � L 0 6 e

d 7 0e 7 0,

lim
xSa

 f (x) � L
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Let and suppose is the number that “works” in the sense of Definition 
2.6.1 for a given As shown in FIGURE 2.6.2(a), every x in with the pos-
sible exception of a itself, will then have an image in Furthermore, as
in Figure 2.6.2(b), a choice for the same also “works” in that every x not equal to
a in gives in However, Figure 2.6.2(c) shows that
choosing a smaller will demand finding a new value of Observe in Figure
2.6.2(c) that x is in but not in and so is not necessarily
in (L � e1, L � e1).

f (x)(a � d1, a � d1),(a � d, a � d)
d.e1, 0 6 e1 6 e,

(L � e, L � e).f (x)(a � d1, a � d1)
ed1 6 d

(L � e, L � e).f (x)
(a � d, a � d),e 7 0.

d 7 0lim
xSa

 f (x) � L

2.6 Limits—A Formal Approach 105

y

xx

L � �

L � �

L

a � � a a � �

(a) A � that works for a given �

ƒ(x)

y

x

L � �

L � �

L

a � �
a � �1

a a � �
a � �1

(b) A smaller �1 will also work for the

      same �
(c) A smaller �1 will require a �1	 �. 
     For x in (a � �, a � �), f (x) is

     not necessarily in (L � �1, L � �1)

y

x

ƒ(x)

x

L � �
L � �1

L � �

L � �1
L

a � � a a � �
a � �1 a � �1

FIGURE 2.6.2 is in whenever x is in (a � d, a � d), x � a(L � e, L � e)f (x)

EXAMPLE 1 Using Definition 2.6.1
Prove that 

Solution For any arbitrary regardless how small, we wish to find a so that

whenever

To do this consider

Thus, to make we need only make 
that is, choose 

Verification If then implies 

or

EXAMPLE 2 Using Definition 2.6.1

Prove that 

Solution For 

Thus,

whenever we have that is, choose 

EXAMPLE 3 A Limit That Does Not Exist
Consider the function

f (x) � e0, x 
 1
2, x 7 1.

d � e.0 6 0x � (�4) 0 6 e;

` 16 � x2

4 � x
� 8 ` � 0x � (�4) 0 6 e

` 16 � x2

4 � x
� 8 ` � 04 � x � 8 0 � 0�x � 4 0 � 0x � 4 0 � 0x � (�4) 0

x � �4,

lim
xS�4

16 � x2

4 � x
� 8.

0 (5x � 2) � 17 0 6 e  or  0 f (x) � 17 0 6 e.05x � 15 0 6 e

5 0x � 3 0 6 e0 6 0x � 3 0 6 e>5,

d � e>5.
0 6 0 x � 3 0 6 e>5;0 (5x � 2) � 17 0 � 5 0x � 3 0 6 e,

0 (5x � 2) � 17 0 � 05x � 15 0 � 5 0x � 3 0 .

0 6 0x � 3 0 6 d.0 (5x � 2) � 17 0 6 e

de 7 0,

lim
xSa 

(5x � 2) � 17.

We examined this limit in (1) and (2)
of Section 2.1.
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We recognize in FIGURE 2.6.3 that f has a jump discontinuity at 1 and so does not exist. 
However, to prove this last fact, we shall proceed indirectly. Assume that the limit exists,
namely, . Then from Definition 2.6.1 we know that for the choice there 

must exist a so that

whenever

Now to the right of 1, let us choose Since

we must have

(5)

To the left of 1, choose But

implies (6)

Solving the absolute-value inequalities (5) and (6) gives, respectively,

Since no number L can satisfy both of these inequalities, we conclude that does
not exist.

In the next example we consider the limit of a quadratic function. We shall see that find-
ing the in this case requires a bit more ingenuity than in Examples 1 and 2.

EXAMPLE 4 Using Definition 2.6.1
Prove that 

Solution For an arbitrary we must find a so that

Now,

(7)

In other words, we want to make But since we have agreed to exam-
ine values of x near 4, let us consider only those values for which This last
inequality gives or equivalently Consequently we can write

Hence from (7),

implies .

If we now choose to be the minimum of the two numbers, 1 and written
we have

implies

The reasoning in Example 4 is subtle. Consequently it is worth a few minutes of
your time to reread the discussion immediately following Definition 2.6.1, reexamine

0�x2 � 2x � 2 � (�6) 0 6 7 0x � 4 0 6 7 . e
7

� e.0 6 0x � 4 0 6 d

d � min{1, e>7}
e>7,d

0�x2 � 2x � 2 � (�6) 0 6 7 0 x � 4 00 6 0 x � 4 0 6 1

0x � 2 0 6 7.
5 6 x � 2 6 7.3 6 x 6 5

0 x � 4 0 6 1.
0x � 2 0 0x � 4 0 6 e.

 � 0 x � 2 0 0x � 4 0 .
 � 0 (x � 2)(x � 4) 0

 0�x2 � 2x � 2 � (�6) 0 � 0 (�1)(x2 � 2x � 8) 0

0�x2 � 2x � 2 � (�6) 0 6 e  whenever  0 6 0x � 4 0 6 d.

d 7 0e 7 0

lim
xS4 

(�x2 � 2x � 2) � �6.

d

lim
xS1

 f (x)

3
2

6 L 6 5
2
  and  �

1
2

6 L 6 1
2

.

 ` f  a1 �
d

2
b � L ` � 00 � L 0 � 0L 0 6 1

2
.

 0 6 `1 �
d

2
� 1 ` � `�d

2
` 6 d

x � 1 � d>2.

` f  a1 �
d

2
b � L ` � 02 � L 0 6 1

2
.

0 6 `1 �
d

2
� 1 ` � ` d

2
` 6 d

x � 1 � d>2.

0 6 0 x � 1 0 6 d.0 f (x) � L 0 6 1
2

d 7 0

e � 1
2lim

xS1 
f (x) � L

lim
xS1  

f (x)

106 CHAPTER 2 Limit of a Function

y

x
1

FIGURE 2.6.3 Limit of f does not exist
as x approaches 1 in Example 3

We examined this limit in Example 1
of Section 2.1.
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Figure 2.3.2(b), and then think again about why is the that “works”
in the example. Remember, you can pick the arbitrarily; think about for, say,

and 

One-Sided Limits We state next the definitions of the one-sided limits, and
lim

xSa�
 f (x).

lim
xSa�

 

 f (x)

e � 0.01.e � 8, e � 6,
de

dd � min{1, e>7}

2.6 Limits—A Formal Approach 107

Definition 2.6.2 Left-Hand Limit

Suppose a function f is defined on an open interval (c, a). Then

means for every there exists a such that

whenever a � d 6 x 6 a.0 f (x) � L 0 6 e

d 7 0e 7 0

lim
xSa�

 f (x) � L

Definition 2.6.3 Right-Hand Limit

Suppose a function f is defined on an open interval (a, c). Then

means for every there exists a such that

whenever a 6 x 6 a � d.0 f (x) � L 0 6 e

d 7 0e 7 0

lim
xSa�

f (x) � L

EXAMPLE 5 Using Definition 2.6.3
Prove that 

Solution First, we can write

.

Then, whenever In other words, we choose 

Verification If then implies

or

Limits Involving Infinity The two concepts of infinite limits

and a limit at infinity

are formalized in the next two definitions.
Recall, an infinite limit is a limit that does not exist as .x S a

f (x) S L as x S q (or �q)

f (x) S q (or �q) as x S a

01x � 0 0 6 e.01x 0 6 e

0 6 1x 6 e0 6 x 6 e2,

d � e2.0 6 x 6 0 � e2.01x � 0 0 6 e

01x � 0 0 � 01x 0 � 1x

lim
xS0�

1x � 0.

Definition 2.6.4 Infinite Limits

(i ) means for each there exists a such that whenever

(ii) means for each there exists a such that 

whenever 0 6 0 x � a 0 6 d.
f (x) 6 Md 7 0M 6 0,lim

xSa
 f (x) � �q

0 6 0x � a 0 6 d.
f (x) 7 Md 7 0M 7 0,lim

xSa
 f (x) � q
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Parts (i) and (ii) of Definition 2.6.4 are illustrated in FIGURE 2.6.4(a) and Figure 2.6.4(b),
respectively. Recall, if as then is a vertical asymptote for
the graph of f. In the case when as then can be made larger than any
arbitrary positive number (that is, by taking x sufficiently close to a (that is,

).0 6 0 x � a 0 6 d
f (x) 7 M )

f (x)x S a,f (x) S q
x � ax S a,f (x) S q (or �q)

108 CHAPTER 2 Limit of a Function

FIGURE 2.6.5 Limits at infinity

y

x

y � M

a � �

(a) For a given M, whenever

     a � � 	 x 	 a � �, x � a,

     then ƒ(x) � M

a � �ax

ƒ(x)

(b) For a given M, whenever

      a � � 	 x 	 a � �, x � a,

      then ƒ(x) 	 M

y

x

y � M

a � � a � �a x

ƒ(x)

FIGURE 2.6.4 Infinite limits as x S a

The four one-sided infinite limits

are defined in a manner analogous to that given in Definitions 2.6.2 and 2.6.3.

f (x) S q as x S a�,  f (x) S �q as x S a�

f (x) S q as x S a�,  f (x) S �q as x S a�

Definition 2.6.5 Limits at Infinity

(i ) if for each there exists an such that 

whenever 
(ii ) if for each there exists an such that 

whenever x 6 N.

0 f (x) � L 0 6 eN 6 0e 7 0,lim
xS�q

f (x) � L
x 7 N.

0 f (x) � L 0 6 eN 7 0e 7 0,lim
xSq

 f (x) � L

Parts (i) and (ii) of Definition 2.6.5 are illustrated in FIGURE 2.6.5(a) and Figure 2.6.5(b),
respectively. Recall, if as then is a horizontal asymptote
for the graph of f. In the case when as then the graph of f can be made
arbitrarily close to the line (that is, ) by taking x sufficiently far out on
the positive x-axis (that is, ).x 7 N

0 f (x) � L 0 6 ey � L
x S q,f (x) S L

y � Lx S q (or �q),f (x) S L

y

xx

ƒ(x)

L � �

L � �

N

L

(a) For a given �, x � N implies

     L � � 	 f (x) 	 L � �

y

xx

ƒ(x)

N

L � �

L � �

L

(b) For a given �, x 	 N implies

     L � � 	 f (x) 	 L � �
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EXAMPLE 6 Using Definition 2.6.5(i )

Prove that 

Solution By Definition 2.6.5(i), for any we must find a number such that

whenever

Now, by considering , we have

whenever . Hence, choose . For example, if then 
will guarantee that whenever 

Postscript—A Bit of History After this section you may agree with English philosopher,
priest, historian, and scientist William Whewell (1794–1866), who wrote in 1858 that “A
limit is a peculiar . . . conception.” For many years after the invention of calculus in the sev-
enteenth century, mathematicians argued and debated the nature of a limit. There was an
awareness that intuition, graphs, and numerical examples of ratios of vanishing quantities
provide at best a shaky foundation for such a fundamental concept. As you will see begin-
ning in the next chapter, the limit concept plays a central role in calculus. The study of cal-
culus went through several periods of increased mathematical rigor beginning with the
French mathematician Augustin-Louis Cauchy and continuing later with the German mathe-
matician Karl Wilhelm Weierstrass.

Augustin-Louis Cauchy (1789–1857) was born during an era of upheaval
in French history. Cauchy was destined to initiate a revolution of his own
in mathematics. For many contributions, but especially for his efforts in clar-
ifying mathematical obscurities, his incessant demand for satisfactory defi-
nitions and rigorous proofs of theorems, Cauchy is often called “the father
of modern analysis.” A prolific writer whose output has been surpassed by
only a few, Cauchy produced nearly 800 papers in astronomy, physics, and

mathematics. But the same mind that was always open and inquiring in science and math-
ematics was also narrow and unquestioning in many other areas. Outspoken and arrogant,
Cauchy’s passionate stands on political and religious issues often alienated him from his
colleagues.

Karl Wilhelm Weierstrass (1815–1897) One of the foremost mathematical
analysts of the nineteenth century never earned an academic degree! After
majoring in law at the University of Bonn, but concentrating in fencing and
beer drinking for four years, Weierstrass “graduated” to real life with no
degree. In need of a job, Weierstrass passed a state examination and received
a teaching certificate in 1841. During a period of 15 years as a secondary
school teacher, his dormant mathematical genius blossomed. Although the

quantity of his research publications was modest, especially when compared with that of
Cauchy, the quality of these works so impressed the German mathematical community that
he was awarded a doctorate, honoris causa, from the University of Königsberg and eventu-
ally was appointed a professor at the University of Berlin. While there, Weierstrass achieved
worldwide recognition both as a mathematician and as a teacher of mathematics. One of his
students was Sonja Kowalewski, the greatest female mathematician of the nineteenth century.
It was Karl Wilhelm Weierstrass who was responsible for putting the concept of a limit on
a firm foundation with the definition.e-d

x 7 300.0 f (x) � 3 0 6 0.01
N � 3>(0.01) � 300e � 0.01,N � 3>ex 7 3>e

` 3x
x � 1

� 3 ` � ` �3
x � 1

` �
3

x � 1
6 3

x
6 e

x 7 0

x 7 N.` 3x
x � 1

� 3 ` 6 e

N 7 0e 7 0,

lim
xSq

 

3x
x � 1

� 3.
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Cauchy

Weierstrass

59957_CH02b_067-120.qxd  9/26/09  5:26 PM  Page 109

© Jones and Bartlett Publishers, LLC.  NOT FOR SALE OR DISTRIBUTION. 



Exercises 2.6 Answers to selected odd-numbered problems begin on page ANS-000.

110 CHAPTER 2 Limit of a Function

Fundamentals

In Problems 1–24, use Definitions 2.6.1, 2.6.2, or 2.6.3 to prove
the given limit result.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13.

14.

15. 16.

17. 18.

19.

20.

21. 22.

23. 24. lim
xS5 

(x2 � 2x) � 35lim 
xS1

(x2 � 2x � 4) � 3

lim
xS2 

(2x2 � 4) � 12lim
xS3 

x2 � 9

lim
xS1� 

f (x) � 3, f (x) � e0, x 
 1
3, x 7 1

lim
xS0�

 f (x) � �1, f (x) � e2x � 1, x 6 0
2x � 1, x 7 0

lim
xS(1>2)�

12x � 1 � 0lim
xS0�

15x � 0

lim
xS0 

8x3 � 0lim
xS0 

x2 � 0

lim
xS1

 
2x3 � 5x 2 � 2x � 5

x2 � 1
� 7

lim
xS0

 
8x 5 � 12x 4

x4
� 12

lim
xS3

 
x 2 � 7x � 12

2x � 6
� �

1
2

lim
xS�5

x2 � 25
x � 5

� �10

lim
xS1>28(2x � 5) � 48lim

xS2
 
2x � 3

4
�

1
4

lim
xS1 

(9 � 6x) � 3lim
xS0 

(3x � 7) � 7

lim
xS0 

(x � 4) � �4lim
xS�1

(x � 6) � 5

lim
xS4 

2x � 8lim
xS3  

x � 3

lim
xS�2
p � plim

xS5 

10 � 10

25. For , use the identity.

and the fact that to prove that 

26. Prove that [Hint: Consider only those numbers

x for which 

In Problems 27–30, prove that does not exist.

27.

28.

29.

30.

In Problems 31–34, use Definition 2.6.5 to prove the given
limit result.

31. 32.

33. 34.

Think About It

35. Prove that where f (x) � e x, x rational
0, x irrational .lim 

xS0   

f (x) � 0,

lim
xS�q

 
x2

x2 � 3
� 1lim

xS�q
 

10x
x � 3

� 10

lim
xSq

 
2x

3x � 8
�

2
3

lim
xSq

 
5x � 1
2x � 1

�
5
2

f (x) �
1
x

; a � 0

f (x) � e x, x 
 0
2 � x, x 7 0

; a � 0

f (x) � e1, x 
 3
�1, x 7 3

; a � 3

f (x) � e2, x 6 1
0, x �  1

; a � 1

lim
xSa  

f (x)

1 6 x 6 3.]

lim
xS2 

(1>x) � 1
2.

lim
xSa

1x � 1a.1x � 0

01x � 1a 0 � 01x � 1a 0 . 1x � 1a
1x � 1a

�
0x � a 0

1x � 1a

a 7 0

2.7 The Tangent Line Problem
Introduction In a calculus course you will study many different things, but as mentioned in

the introduction to Section 2.1, the subject “calculus” is roughly divided into two broad but re-
lated areas known as differential calculus and integral calculus. The discussion of each of
these topics invariably begins with a motivating problem involving the graph of a function.
Differential calculus is motivated by the problem

• Find a tangent line to the graph of a function f,

whereas integral calculus is motivated by the problem

• Find the area under the graph of a function f.

The first problem will be addressed in this section; the second problem will be discussed in
Section 5.3.

Tangent Line to a Graph The word tangent stems from the Latin verb tangere, meaning “to
touch.” You might remember from the study of plane geometry that a tangent to a circle is a line
L that intersects, or touches, the circle in exactly one point P. See FIGURE 2.7.1. It is not quite as
easy to define a tangent line to the graph of a function f. The idea of touching carries over to
the notion of a tangent line to the graph of a function, but the idea of intersecting the graph in
one point does not carry over.

FIGURE 2.7.1 Tangent line L touches a
circle at point P

Tangent

line at
L

P
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Guidelines for Computing (2)

(i) Evaluate and 
(ii) Evaluate the difference Simplify.

(iii) Simplify the difference quotient

.

(iv) Compute the limit of the difference quotient

.lim
hS0

 
f (a � h) � f (a)

h

f (a � h) � f (a)
h

f (a � h) � f (a).
f (a � h).f (a)

Suppose is a continuous function. If, as shown in FIGURE 2.7.2, f possesses a line
L tangent to its graph at a point P, then what is an equation of this line? To answer this ques-
tion, we need the coordinates of P and the slope mtan of L. The coordinates of P pose no dif-
ficulty, since a point on the graph of a function f is obtained by specifying a value of x in
the domain of f. The coordinates of the point of tangency at are then .
Therefore, the problem of finding a tangent line comes down to the problem of finding the
slope mtan of the line. As a means of approximating mtan, we can readily find the slopes msec

of secant lines (from the Latin verb secare, meaning “to cut”) that pass through the point P
and any other point Q on the graph. See FIGURE 2.7.3.

Slope of Secant Lines If P has coordinates and if Q has coordinates
then as shown in FIGURE 2.7.4, the slope of the secant line through P and Q is

or . (1)

The expression on the right-hand side of the equality in (1) is called a difference quotient. When
we let h take on values that are closer and closer to zero, that is, as , then the points

move along the curve closer and closer to the point . Intuitively, we
expect the secant lines to approach the tangent line L, and that as That is,

provided this limit exists. We summarize this conclusion in an equivalent form of the limit
using the difference quotient (1).

mtan � lim
hS0 

msec

h S  0.msec S  mtan

P(a, f  (a))Q(a � h, f (a � h))
h S  0

msec �
f (a � h) � f (a)

h

msec �
change in y
change in x

�
f (a � h) � f (a)

(a � h) � a

(a � h, f (a � h)),
(a, f  (a))

(a, f (a))x � a

y � f (x)
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Tangent

line at

P(a, ƒ(a))

L

xa

y

x 

y 

Tangent

line
Secant

lines

L

Q

P(a, ƒ(a))

FIGURE 2.7.2 Tangent line L to a
graph at point P

FIGURE 2.7.3 Slopes of secant lines
approximate the slope mtan of L

Definition 2.7.1 Tangent Line with Slope

Let be continuous at the number a. If the limit

(2)

exists, then the tangent line to the graph of f at is that line passing through the
point with slope mtan.(a, f (a))

(a, f (a))

mtan � lim
hS0

 
f (a � h) � f (a)

h

y � f (x)

Secant

line

P(a, ƒ(a))

Tangent

line

L

ƒ(a � h) �ƒ(a)

Q(a � h, ƒ(a � h))

a � h

h

a
x

y

FIGURE 2.7.4 Secant lines swing into the
tangent line L as h S 0

Just like many of the problems discussed earlier in this chapter, observe that the limit in
(2) has the indeterminate form as 

If the limit in (2) exists, the number mtan is also called the slope of the curve

at .
The computation of (2) is essentially a four-step process; three of these steps involve

only precalculus mathematics: algebra and trigonometry. If the first three steps are done accu-
rately, the fourth step, or the calculus step, may be the easiest part of the problem.

(a, f (a))
y � f (x)

h S  0.0>0
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The computation of the difference in step (ii) is in most instances the
most important step. It is imperative that you simplify this step as much as possible. Here is
a tip: In many problems involving the computation of (2) you will be able to factor h from
the difference 

EXAMPLE 1 The Four-Step Process
Find the slope of the tangent line to the graph of at 

Solution We use the four-step procedure outlined above with the number 1 playing the part
of the symbol a.

(i) The initial step is the computation of and . We have and

(ii) Next, from the result in the preceding step the difference is:

(iii) The computation of the difference quotient is now straightforward. 
Again, we use the results from the preceding step:

(iv) The last step is now easy. The limit in (2) is seen to be

The slope of the tangent line to the graph of at (1, 3) is 2.

EXAMPLE 2 Equation of Tangent Line
Find an equation of the tangent line whose slope was found in Example 1.

Solution We know the point of tangency (1, 3) and the slope , and so from the
point–slope equation of a line we find

or

Observe that the last equation is consistent with the x- and y-intercepts of the red line
in FIGURE 2.7.5.

EXAMPLE 3 Equation of Tangent Line
Find an equation of the tangent line to the graph of at 

Solution We start by using (2) to find mtan with a identified as 2. In the second of the four
steps, we will have to combine two symbolic fractions by means of a common denominator.

(i) We have and 

(ii)

 �
�h

2 � h
.

 �
2 � 2 � h

2 � h

 �
2

2 � h
�

1
1

. 2 � h
2 � h

 f (2 � h) � f (2) �
2

2 � h
� 1

f (2 � h) � 2>(2 � h).f (2) � 2>2 � 1

x � 2.f (x) � 2>x

y � 2x � 1.y � 3 � 2(x � 1)

mtan � 2

y � x2 � 2

mtan � lim
hS0

 
f (1 � h) � f (1)

h
� lim

hS0 
(2 � h) � 2.

f ( 1 � h) � f (1)
h

�
h (2 � h)

 h
� 2 � h.

f ( 1 � h) � f (1)
h

 � h(2 � h).

 � 2h � h2

 f (1 � h) � f (1) � 3 � 2h � h2 � 3

 � 3 � 2h � h2.

 � (1 � 2h � h2) � 2

 f (1 � h) � (1 � h)2 � 2

f (1) � 12� 2 � 3,f (1 � h)f (1)

x � 1.y � x2 � 2

f (a � h) � f (a).

f (a � h) � f (a)

112 CHAPTER 2 Limit of a Function

notice the factor of hd

from the preceding step
d d

cancel the h’sd

FIGURE 2.7.5 Tangent line in Example 2

x

yy � x2 � 2
y � 2x � 1

(1, 3)

m tan � 2

at

a common denominator is 2 � hd

here is the factor of hd

Note
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(iii) The last result is to be divided by h or more precisely . We invert and multiply by 

(iv) From (2) mtan is

From the point of tangency is (2, 1) and the slope of the tangent line at (2, 1) is
. From the point–slope equation of a line, the tangent line is

or

The graphs of and the tangent line at (2, 1) are shown in FIGURE 2.7.6.

EXAMPLE 4 Slope of Tangent Line
Find the slope of the tangent line to the graph of at 

Solution Replacing a by 5 in (2), we have:

(i) and

.

(ii) The difference is

.

Because we expect to find a factor of h in this difference, we proceed to ration-
alize the numerator:

(iii) The difference quotient is then:

(iv) The limit in (2) is

The slope of the tangent line to the graph of at (5, 2) is 

The result obtained in the next example should come as no surprise.

1
4.f (x) � 1x � 1

mtan � lim
hS0

 
f (5 � h) � f (5)

h
� lim

hS0
 

1

24 � h � 2
�

1

24 � 2
�

1
4

.

 �
1

14 � h � 2
.

 �
h

h(14 � h � 2)

 
f (5 � h) � f (5)

h
�

h
14 � h � 2

h

f (5 � h) � f (5)
h

 �
h

24 � h � 2
.

 �
(4 � h) � 4

24 � h � 2

 f (5 � h) � f (5) �
14 � h � 2

1
. 14 � h � 2
14 � h � 2

f (5 � h) � f (5) � 14 � h � 2

f (5 � h) � 15 � h � 1 � 14 � h

f (5) � 15 � 1 � 14 � 2,

x � 5.f (x) � 1x � 1

y � 2>x
y � �

1
2

 x � 2.y � 1 �
1
2

 (x � 2)

mtan � �1
2

f (2) � 1

mtan � lim
hS0

 

f (2 � h) � f (2)
h

� lim
hS0

  

�1
2 � h

� �
1
2

.

f (2 � h) � f (2)
h

�

�h
2 � h

h
1

�
�h

2 � h
. 1

h
�

�1
2 � h

.

1
h

:
h
1
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cancel the h’sd

FIGURE 2.7.6 Tangent line in Example 3

Point of tangency

(2, 1)

x

y

Slope is mtan � �

y�
2
x

1

2

here is the factor of hd
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EXAMPLE 5 Tangent Line to a Line
For any linear function , the tangent line to its graph coincides with the line itself.
Not unexpectedly then, the slope of the tangent line for any number is

Vertical Tangents The limit in (2) can fail to exist for a function f at and yet there may
be a tangent at the point The tangent line to a graph can be vertical, in which case its
slope is undefined. We will consider the concept of vertical tangents in more detail in Section 3.1.

EXAMPLE 6 Vertical Tangent Line
Although we will not pursue the details at this time, it can be shown that the graph of

possesses a vertical tangent line at the origin. In FIGURE 2.7.7 we see that the y-axis,
that is, the line , is tangent to the graph at the point (0, 0).

A Tangent May Not Exist The graph of a function f that is continuous at a number a does
not have to possess a tangent line at the point A tangent line will not exist whenever
the graph of f has a sharp corner at FIGURE 2.7.8 indicates what can go wrong when the
graph of a function f has a “corner.” In this case f is continuous at a, but the secant lines through
P and Q approach L2 as and the secant lines through P and approach a different line
L1 as In other words, the limit in (2) fails to exist because the one-sided limits of the
difference quotient (as and as are different.

EXAMPLE 7 Graph with a Corner
Show that the graph of does not have a tangent at (0, 0).

Solution The graph of the absolute-value function in FIGURE 2.7.9 has a corner at the origin.
To prove that the graph of f does not possess a tangent line at the origin we must examine

From the definition of absolute value

we see that

whereas

Since the right-hand and left-hand limits are not equal we conclude that the limit (2) does
not exist. Even though the function is continuous at the graph of f pos-
sesses no tangent at (0, 0).

Average Rate of Change In different contexts the difference quotient in (1) and (2), or slope of
the secant line, is written in terms of alternative symbols. The symbol h in (1) and (2) is often writ-
ten as and the difference is denoted by , that is, the difference quotient is

(3)

Moreover, if , then and (3) is the same as

(4)

The slope of the secant line through the points and is called the
average rate of change of the function f over the interval The limit 
is then called the instantaneous rate of change of the function with respect to x at x0.

Almost everyone has an intuitive notion of speed as a rate at which a distance is cov-
ered in a certain length of time. When, say, a bus travels 60 mi in 1 h, the average speed

lim
¢xS0

¢y>¢x[x0, x1 ] .
(x1, f (x1))(x0, f (x0))¢y>¢x

f (x1) � f (x0)
x1 � x0

�
¢y
¢x

.

¢x � x1 � x0x1 � a � ¢x, x0 � a

change in y
change in x

�
f (a � ¢x) � f (a)

(a � ¢x) � a
�

f (a � ¢x) � f (a)
¢x

�
¢y
¢x

.

¢yf (a � ¢x) � f (a)¢x

x � 0,f (x) � 0 x 0

lim
hS0�

0h 0
h

� lim
hS0�

�h
h

� �1.lim
hS0�

0h 0
h

� lim
hS0�

h
h

� 1

0h 0 � eh, h 7 0
�h, h 6 0

lim
hS0

 
f (0 � h) � f (0)

h
� lim

hS0
 
00 � h 0 � 00 0

h
� lim

hS0
 
0h 0
h

.

f (x) � 0 x 0

h S 0�)h S 0�
Q¿ S P.

Q¿Q S P,

(a, f (a)).
(a, f (a)).

x � 0
f (x) � x1>3

(a, f (a)).
x � a

mtan � lim
hS0

 
f (a � h) � f (a)

h
� lim

hS0
 
m(a � h) � b � (ma � b)

h
� lim

hS0
 
mh
h

� lim
hS0 

m � m.

x � a
y � mx � b
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FIGURE 2.7.7 Vertical tangent in
Example 6

y � x1/3

x

y

FIGURE 2.7.9 Function in Example 7

x 

y 

y � |x|

FIGURE 2.7.8 Tangent fails to exist at
(a, f (a))

L2

L1

y �ƒ(x)

Q

a
x

y

Q�

P
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of the bus must have been 60 mi/h. Of course, it is difficult to maintain the rate of 60 mi/h
for the entire trip because the bus slows down for towns and speeds up when it passes cars.
In other words, the speed changes with time. If a bus company’s schedule demands that the
bus travel the 60 mi from one town to another in 1 h, the driver knows instinctively that he
or she must compensate for speeds less than 60 mi/h by traveling at speeds greater than this
at other points in the journey. Knowing that the average velocity is 60 mi/h does not, how-
ever, answer the question: What is the velocity of the bus at a particular instant?

Average Velocity In general, the average velocity or average speed of a moving object is
defined by

. (5)

Consider a runner who finishes a 10-km race in an elapsed time of 1 h 15 min (1.25 h).
The runner’s average velocity or average speed for the race was

.

But suppose we now wish to determine the runner’s exact velocity at the instant the runner
is one-half hour into the race. If the distance run in the time interval from 0 h to 0.5 h is
measured to be 5 km, then

Again, this number is not a measure, or necessarily even a good indicator, of the instanta-
neous rate at which the runner is moving 0.5 h into the race. If we determine that at 0.6
h the runner is 5.7 km from the starting line, then the average velocity from 0 h to 0.6 h is

However, during the time interval from 0.5 h to 0.6 h,

The latter number is a more realistic measure of the rate . See FIGURE 2.7.10. By “shrinking” the
time interval between 0.5 h and the time that corresponds to a measured position close to 5 km,
we expect to obtain even better approximations to the runner’s velocity at time 0.5 h.

Rectilinear Motion To generalize the preceding discussion, let us suppose an object, or par-
ticle, at point P moves along either a vertical or horizontal coordinate line as shown in FIGURE 2.7.11.
Furthermore, let the particle move in such a manner that its position, or coordinate, on the line
is given by a function , where t represents time. The values of s are directed distances
measured from O in units such as centimeters, meters, feet, or miles. When P is either to the
right of or above O, we take , whereas when P is either to the left of or below O.
Motion in a straight line is called rectilinear motion.

If an object, such as a toy car moving on a horizontal coordinate line, is at point P at
time t0 and at point at time t1, then the coordinates of the points, shown in FIGURE 2.7.12,
are s(t0) and s(t1). By (4) the average velocity of the object in the time interval [t0, t1] is

(6)

EXAMPLE 8 Average Velocity
The height s above ground of a ball dropped from the top of the St. Louis Gateway Arch is
given by where s is measured in feet and t in seconds. See FIGURE 2.7.13.
Find the average velocity of the falling ball between the time the ball is released and the time
it hits the ground.

Solution The time at which the ball is released is determined from the equation 
or This gives When the ball hits the ground then ors(t) � 0t � 0 s.�16t 2 � 630 � 630.

s(t) � 630

s(t) � �16t 2 � 630,

yave �
change in position

change in time
�

s(t1) � s(t0)
t1 � t0

.

P¿

s 6 0s 7 0

s � s(t)

y

yave �
5.7 � 5

0.6 � 0.5
� 7 km/h.

yave � 5.7>0.6 � 9.5 km/h.

y

yave �
5

0.5
� 10 km/h.

y

yave �
10 � 0

1.25 � 0
� 8 km/h

yave �
change of distance

change in time
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finishstart

5 km

in 0.5 h

0.7 km

in 0.1 h

10 km

in 1.25 h

FIGURE 2.7.10 Runner in a 10-km race

PO

O

P

FIGURE 2.7.11 Coordinate lines

P�
S 

P 
t0 

t
1 

O

0

Ground

630 ft

Ball

s(t)

s

0

FIGURE 2.7.12 Position of toy car on a
coordinate line at two times

FIGURE 2.7.13 Falling ball in Example 8
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The last equation gives Thus from (6) the average
velocity in the time interval is

If we let , or and then (6) is equivalent to

(7)

This suggests that the limit of (7) as gives the instantaneous rate of change of s(t)
at or the instantaneous velocity.t � t0

¢t S 0

yave �
¢s
¢t

.

¢s � s(t0 � ¢t) � s(t0),¢t � t1 � t0,t1 � t0 � ¢t

yave �
s(1351>8) � s(0)

1351>8 � 0
�

0 � 630
1351>8 � 0

� �100.40 ft/s.

[0, 1315>8]
t � 1315>8 � 6.27 s.�16t 2 � 630 � 0.

116 CHAPTER 2 Limit of a Function

Definition 2.7.2 Instantaneous Velocity

Let be a function that gives the position of an object moving in a straight line.
Then the instantaneous velocity at time is

(8)

whenever the limit exists.

y(t0) � lim
¢tS0

 
s(t0 � ¢t) � s(t0)

¢t
� lim

¢tS0
 
¢s
¢t

,

t � t0

s � s(t)

Note: Except for notation and interpretation, there is no mathematical difference between
(2) and (8). Also, the word instantaneous is often dropped, and so one often speaks of the
rate of change of a function or the velocity of a moving particle.

EXAMPLE 9 Example 8 Revisited
Find the instantaneous velocity of the falling ball in Example 8 at 

Solution We use the same four-step procedure as in the earlier examples with given
in Example 8.

(i) For any 

(ii)

(iii)

(iv) From (8),

(9)

In Example 9, the number ft is the height of the ball above ground at 3 s.
The minus sign in (9) is significant because the ball is moving opposite to the positive or
upward direction.

s(3) � 486

y(3) � lim
¢tS0

 
¢s
¢t

� lim
¢tS0

(�16¢t � 96) � �96 ft/s.

¢s
¢t

�
¢t(�16¢t � 96)

¢t
� �16¢t � 96

 � �16(¢t)2 � 96¢t � ¢t(�16¢t � 96)

 s(3 � ¢t) � s(3) � [�16(¢t)2 � 96¢t � 486] � 486

s(3 � ¢t) � �16(3 � ¢t)2 � 630 � �16(¢t)2 � 96¢t � 486.

¢t � 0,s(3) � �16(9) � 630 � 486.

s � s(t)

t � 3 s.

Exercises 2.7 Answers to selected odd-numbered problems begin on page ANS-000.

Fundamentals

In Problems 1–6, sketch the graph of the function and the tan-
gent line at the given point. Find the slope of the secant line
through the points that correspond to the indicated values of x.

1.

2. f (x) � x2 � 4x, (0, 0); x � �
1
4

, x � 0

f (x) � �x2 � 9, (2, 5); x � 2, x � 2.5

3.

4.

5.

6.

In Problems 7–8, use (2) to find the slope of the tangent line
to the graph of the function at the given value of x. Find an
equation of the tangent line at the corresponding point.

f (x) � cos x, A�p>3, 12B; x � �p>2, x � �p>3
f (x) � sin x, (p>2, 1); x � p>2, x � 2p>3
f (x) � 1>x, (1, 1); x � 0.9, x � 1

f (x) � x3, (�2, �8); x � �2, x � �1
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2.7 The Tangent Line Problem 117

7.

8.

9.

10.

11. 12.

13. 14.

15. 16.

17. 18.

In Problems 19 and 20, use (2) to find the slope of the tangent
line to the graph of the function at the given value of x. Find an
equation of the tangent line at the corresponding point. Before
starting, review the limits in (10) and (14) of Section 2.4 and the
sum formulas (17) and (18) in Section 1.4.

19. 20.

In Problems 21 and 22, determine whether the line that passes
through the red point is tangent to the graph of at the
blue point.

21. 22.

23. In FIGURE 2.7.16, the red line is tangent to the graph of
at the indicated point. Find an equation of the

tangent line. What is the y-intercept of the tangent line?

24. In FIGURE 2.7.17, the red line is tangent to the graph of
at the indicated point. Find f (�5).y � f (x)

y � f (x)

f (x) � x2

f (x) � cos x, x � p>4f (x) � sin x, x � p>6

f (x) �
1
1x

, x � 1f (x) � 1x, x � 4

f (x) � 4 �
8
x

, x � �1f (x) �
1

(x � 1)2
, x � 0

f (x) �
4

x � 1
, x � 2f (x) �

1
2x

, x � �1

f (x) � 8x3 � 4, x �
1
2

f (x) � �2x3 � x, x � 2

f (x) � �x2 � 5x � 3, x � �2

f (x) � x2 � 3x, x � 1

f (x) � �3x2 � 10, x � �1

f (x) � x2 � 6, x � 3 In Problems 25–28, use (2) to find a formula for mtan at a general
point on the graph of f. Use the formula for mtan to deter-
mine the points where the tangent line to the graph is horizontal.

25. 26.

27. 28.

Applications

29. A car travels the 290 mi between Los Angeles and Las
Vegas in 5 h. What is its average velocity?

30. Two marks on a straight highway are mi apart. A highway
patrol plane observes that a car traverses the distance between
the marks in 40 s. Assuming a speed limit of 60 mi/h, will
the car be stopped for speeding?

31. A jet airplane averages 920 km/h to fly the 3500 km
between Hawaii and San Francisco. How many hours does
the flight take?

32. A marathon race is run over a straight 26-mi course. The
race begins at noon. At 1:30 P.M. a contestant passes the
10-mi mark and at 3:10 P.M. the contestant passes the 20-mi
mark. What is the contestant’s average running speed
between 1:30 P.M. and 3:10 P.M.?

In Problems 33 and 34, the position of a particle moving on a
horizontal coordinate line is given by the function. Use (8) to find
the instantaneous velocity of the particle at the indicated time.

33. 34.

35. The height above ground of a ball dropped from an initial
altitude of 122.5 m is given by 
where s is measured in meters and t in seconds.

(a) What is the instantaneous velocity at 
(b) At what time does the ball hit the ground?
(c) What is the impact velocity?

36. Ignoring air resistance, if an object is dropped from an initial
height h, then its height above ground at time is given
by where g is the acceleration of gravity.

(a) At what time does the object hit the ground?
(b) If compare the impact times for Earth

for Mars and for the
Moon 

(c) Use (8) to find a formula for the instantaneous velocity
at a general time t.

(d) Using the times found in part (b) and the formula found
in part (c), find the corresponding impact velocities for
Earth, Mars, and the Moon.

37. The height of a projectile shot from ground level is given
by where s is measured in feet and t
in seconds.

(a) Determine the height of the projectile at 
and 

(b) What is the average velocity of the projectile between
and 

(c) Show that the average velocity between and
is zero. Interpret physically.

(d) At what time does the projectile hit the ground?
t � 9

t � 7
t � 5?t � 2

t � 10.t � 9,
t � 6,t � 2,

s � �16t2 � 256t,

y

(g � 5.5 ft/s2).
(g � 12 ft/s2),(g � 32 ft/s2),

h � 100 ft,

s(t) � �1
2  
gt 2 � h,

t 7 0

t � 1
2?

s(t) � �4.9t 2 � 122.5,

s(t) � t 2 �
1

5t � 1
, t � 0s(t) ��4t 2�10t �6, t �3

1
2

f (x) � �x3 � x2f (x) � x3 � 3x

f (x) � 2x2 � 24x � 22f (x) � �x2 � 6x � 1

(x, f (x))

(1, �3)

(3, 9)

(�1, 1)

y

x

FIGURE 2.7.15 Graph
for Problem 22

y

x

(4, 6)

(1, 1)

FIGURE 2.7.14 Graph
for Problem 21

y

4

2 6
x

y � ƒ(x)

FIGURE 2.7.16 Graph for Problem 23

y

x

y � ƒ(x)

�5

4

7

FIGURE 2.7.17 Graph for Problem 24
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(e) Use (8) to find a formula for instantaneous velocity 
at a general time t.

(f) Using the time found in part (d) and the formula found
in part (e), find the corresponding impact velocity.

(g) What is the maximum height the projectile attains?

38. Suppose the graph shown in FIGURE 2.7.18 is that of position
function of a particle moving in a straight line,
where s is measured in meters and t in seconds.

s � s(t)

y (a) Estimate the position of the particle at and at 
(b) Estimate the average velocity of the particle between

and 
(c) Estimate the initial velocity of the particle—that is, its

velocity at 
(d) Estimate a time at which the velocity of the particle

is zero.
(e) Determine an interval on which the velocity of the

particle is decreasing.
(f) Determine an interval on which the velocity of the

particle is increasing.

Think About It

39. Let be an even function whose graph possesses a
tangent line with slope m at Show that the slope
of the tangent line at is . [Hint: Explain why

40. Let be an odd function whose graph possesses a
tangent line with slope m at Show that the slope
of the tangent line at is m.

41. Proceed as in Example 7 and show that there is no tangent
line to graph of at (0, 0).f (x) � x2 � 0x 0

(�a, �f (a))
(a, f (a)).

y � f (x)

f (�a � h) � f (a � h). ]
�m(�a, f (a))

(a, f (a)).
y � f (x)

t � 0.

t � 6.t � 4

t � 6.t � 4

118 CHAPTER 2 Limit of a Function

FIGURE 2.7.18 Graph for Problem 38

s

5

5

t

s � s(t)

Chapter 2 in Review
Answers to selected odd-numbered problems begin on page ANS-000.

A. True/False__________________________________________________________

In Problems 1–22, indicate whether the given statement is true or false.

1. _____ 2. _____

3. _____ 4. _____

5. does not exist. _____ 6. does not exist. _____

7. If and then does not exist. _____

8. If exists and does not exist, then does not exist. _____

9. If and then _____

10. If and then _____

11. If f is a polynomial function, then . _____

12. Every polynomial function is continuous on _____

13. For there exists a number c in such that _____

14. If f and g are continuous at the number 2, then is continuous at 2. _____

15. The greatest integer function is not continuous on the interval [0, 1]. _____

16. If and exist, then exists. _____

17. If a function f is discontinuous at the number 3, then is not defined. _____

18. If a function f is continuous at the number a, then _____

19. If f is continuous and , there is a root of in the interval [a, b]. _____f (x) � 0f (a) f (b) 6 0

lim
xSa 

(x � a) f (x) � 0.

f (3)

lim
xSa 

f (x)lim
xSa�

f (x)lim
xSa�

 f (x)

f (x) � :x ;
f>g

f (c) � 0.[�1, 1]f (x) � x5 � 3x � 1

(�q, q).

lim
xSq 

f (x) � q

lim
xSa

[ f (x) � g(x)] � 0.lim
xSa 

g(x) � q,lim
xSa 

f (x) � q

lim
xSa 

f (x)>g(x) � 1.lim
xSa 

g(x) � q,lim
xSa 

f (x) � q

lim
xSa 

f (x)g(x)lim
xSa 

g(x)lim
xSa 

f (x)

lim
xSa 

f (x)>g(x)lim
xSa 

g(x) � 0,lim
xSa  

f (x) � 3

lim
zS1

 
z3 � 8z � 2

z2 � 9z � 10
lim

xS0�
tan�1 Q1

x
R

lim
xSq

e2x�x2

� q lim
xS0

  

0x 0
x

� 1

lim
xS5

2x � 5 � 0 lim 
xS2

 

x3 � 8
x � 2

� 12 
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20. The function is discontinuous at 5. _____

21. The function has a vertical asymptote at _____

22. If is a tangent line to the graph of a function at , then
_____

B. Fill in the Blanks ____________________________________________________

In Problems 1–22, fill in the blanks.

1. _____ 2. _____

3. _____ 4. _____

5. _____ 6. _____

7. _____ 8. _____

9. _____ 10. _____

11. 12.

13. 14.

15. If and then _____.

16. Suppose for all x. Then _____.

17. If f is continuous at a number a and then _____.

18. If f is continuous at , and then _____.

19. is _________ (continuous/discontinuous) at the number .

20. The equation has precisely _____ roots in the interval 

21. The function has a removable discontinuity at To remove the

discontinuity, should be defined to be _____.

22. If and then _____.

C. Exercises __________________________________________________________

In Problems 1–4, sketch a graph of a function f that satisfies the given conditions.

1.

2.

3.

4. lim
xSq 

 f (x) � 0, f (0) � �3, f (1) � 0, f (�x) � f (x)

lim
xS�q

 f (x) � 2, f (�1) � 3, f (0) � 0, f (�x) � �f (x)

lim
xS�q

 f (x) � 0, f (0) � 1, lim
xS4�

 f (x) � q, lim
xS4�

 f (x) � q, f (5) � 0, lim
xSq

 f (x) � �1

f (0) � 1, f (4) � 0, f (6) � 0, lim
xS3�

 f (x) � 2, lim
xS3�

 f (x) � q, lim
xS�q

 f (x) � 0, lim
xSq

 f (x) � 2

lim
xS�5

 f (g(x)) �
.

f (x) � x 2,lim
xS�5

g(x) � �9

f (2)

x � 2.f (x) �
10
x

�
x 2 � 4
x � 2

(�q, q).e�x 2

� x 2 � 1

1
2f (x) � •

2x � 1

4x2 � 1
, x � 1

2

0.5, x � 1
2

lim
xS5

[g(x) � f (x)] �
.

lim
xS5 

g(x) � 10,x � 5, f (5) � 2

f (a) �
.

lim
xSa 

 f (x) � 10,

lim
xS0 

 f (x)>x2 �
.

x2 � x4>3 
 f (x) 
 x2

lim
xS4�

 f (x) �
.

f (4) � 9,f (x) � 2(x � 4)> 0x � 4 0 , x � 4,

lim
xS__

 

1
1x

� qlim
xS__

x3 � �q

lim
xS__

(5x � 2) � 22lim
xS__

 
1

x � 3
� �q

lim
xS�q

1 � 2ex

4 � ex �lim
xSq

e1>x �

lim
xS0�

e1>x �lim
xS0�

e1>x �

lim
xS0

 
sin 3x

5x
�lim

tS1
 

1 � cos2(t � 1)
t � 1

�

lim
xS�q

2x 2 � 1
2x � 1

�lim
tSq

 

2t � 1
3 � 10t

�

lim
xS3 

(5x 2)0 �lim
xS2 

(3x 2 � 4x) �

f (3) � 1.
(3, f (3))y � f (x)y � x � 2

x � �1.f (x) �
1x

x � 1

f (x) � • x 2 � 6x � 5
x � 5

, x � 5

4, x � 5

Chapter 2 in Review 119

In Problems 5–10, state which of the conditions (a)–(j) are applicable to the graph of 

(a) is not defined (b) (c) f is continuous at (d) f is continuous on [0, a] (e)

(f) (g) (h) (i) ( j) lim
xSq 

 f (x) � 0lim
xSq 

 f (x) � �qlim
xSq 

 f (x) � Llim
xSa

 0 f (x) 0 � qlim
xSa 

 f (x) � L

lim
xSa�

 f (x) � Lx �af (a) � Lf (a)

y � f (x).
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5. 6. 7.

FIGURE 2.R.1 Graph for
FIGURE 2.R.2 Graph for

FIGURE 2.R.3 Graph for 

Problem 5
Problem 6

Problem 7

8. 9. 10.

FIGURE 2.R.4 Graph for
FIGURE 2.R.5 Graph for FIGURE 2.R.6 Graph forProblem 8
Problem 9 Problem 10

In Problems 11 and 12, sketch the graph of the given function. Determine the numbers, if
any, at which f is discontinuous.

11. 12.

In Problems 13–16, determine intervals on which the given function is continuous.

13. 14.

15. 16.

17. Find a number k so that

is continuous at the number 3.

18. Find numbers a and b so that

is continuous everywhere.

In Problems 19–22, find the slope of the tangent line to the graph of the function at the given
value of x. Find an equation of the tangent line at the corresponding point.

19. 20.

21. 22.

23. Find an equation of the line that is perpendicular to the tangent line at the point (1, 2)
on the graph of 

24. Suppose and Find a that will guarantee that
when What limit has been proved by finding d?0 6 0x � 1 0 6 d.0 f (x) � 7 0 6 e

d 7 0e � 0.01.f (x) � 2x � 5

f (x) � �4x2 � 6x.

f (x) � x � 41x, x � 4f (x) �
�1
2x2

, x �
1
2

f (x) � x3 � x2, x � �1f (x) � �3x2 � 16x � 12, x � 2

f (x) � • x � 4, x 
 1
ax � b, 1 6 x 
 3
3x � 8, x 7 3

f (x) � e kx � 1, x 
 3
2 � kx, x 7 3

f (x) �
csc x

2x
f (x) �

x

2x2 � 5

f (x) �
24 � x2

x2 � 4x � 3
f (x) �

x � 6
x3 � x

f (x) � • x � 1, x 6 2
3, 2 6 x 6 4
�x � 7, x 7 4

f (x) � 0x 0 � x

y � ƒ(x)

a
x

y

L

x

y

L

a

y � ƒ(x)

y � ƒ(x)

x
a

y

L

y � ƒ(x)

x
a

y

L

a
x

y

L

y � ƒ(x)

a

y

L

y � ƒ(x)

x
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