
CHAPTER 1
Introduction to Computers
and Programming

Objectives
To understand the basic concepts of the hardware and
software components of a computer system, program
development, program compilation and execution in
C, and the C program processing environment.

General purpose computers have become an impor-
tant part of everyday life, particularly with the evo-

lution of internet technology. Computers and computer
programming are essential components in modern prob-
lem solving and in the technology of information trans-
fer. A computer can store large volumes of data with
fast access, perform complex computations at high
speed, and accurately and efficiently share the resulting
information. Solid-state electronics and integrated cir-
cuits [particularly very large scale integrated (VLSI) cir-
cuits], have revolutionized the computer industry,
making it possible to build increasingly powerful com-
puters with storage capacity and processing power at
decreasing cost. Modern machines are compact, effi-
cient, affordable, and indispensable in every area of
research and applications used in industry, universities,
medicine, music, entertainment, business, and communi-
cations, among others.

1.1 Concept of Computers

and Computer Systems

1.2 Modular Programming

1.3 Algorithms and Program

Development

1.4 Program Processing

1.5 Program Processing

Environment

1.6 Samples of Algorithms

Chapter Summary

Exercises

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 1

2 Introduction to Computers and Programming

Computers are used in educational institutions for teaching, research, and adminis-
trative activities; in industry they are used for research, design, and manufacturing; in
medical sciences for research, diagnosis, treatment, and record keeping; in aeronautics
and space exploration for the design, control, and navigation of space vehicles; in the
exploration of natural resources, for weather forecasting, film production, and in other
such fields. Special types of computer systems are used for engineering analysis and
design, to construct intelligent decision systems, to process natural language docu-
ments, to control production, and in the development of expert diagnostic systems, in
speech recognition, image processing, and robotics.

Because computers and computer programs are widely used in mission critical
applications, cost effectiveness, speed, and reliability are very important factors. The
degree of reliability needed depends on the application. For applications such as space
exploration, nuclear power production, defense, and medical technology, failure of
computerized devices is not acceptable. A high degree of reliability of the entire system
is critical and essential. The concept of reliability has led to the development of fault-
tolerant computer systems. Such systems are designed not to fail (hardware or software)
under any circumstances. A critical part of these systems is the reliable and failure-free
computer program.

Computer users have little control over the speed and accuracy of the computers
they are using. However, users who write their own programs can make decisions
affecting the speed of processing by how they choose to have the computer store the
data, how it is accessed, and the method used to solve the problem. For example,
accessing data randomly is slower than accessing it sequentially and trial and error
methods of solution are slower than using formulas. Program writers can also influence
the accuracy of answers by the choice of formulas, the data storage formats, and the
treatment of significant digits in numeric data. They can influence the reliability of
answers by building checkpoints into the program.

1.1 Concept of Computers and Computer
Systems

Computers are electromechanical devices that function semi-automatically and
are capable of accepting instructions and data, performing computations, and
manipulating data to produce useful results. The term hardware applies to the col-
lection of all of the physical components that constitute a computer. Software is

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 2

1.1 Concept of Computers and Computer Systems 3

the collection of all of the programs that run on the hardware of the computer.
Each program consists of a sequence of instructions, which directs the computer
to input and manipulate data based on the solution algorithm to produce an
answer to the problem and output the results. Firmware is the part of hardware
that is permanently programmed; this type of built-in software is essential in
order to activate (boot) the system.

A computer system consists of hardware, software, and firmware. Computers
are categorized according to their size (memory and number of processors), func-
tions, and areas of applications. With the revolution of internet technology, they
are further classified according to design and function as general-purpose, server,
workstation, web hosting, and network computers. General-purpose computers
can run many different programming languages and solve many different types of
problems. Special-purpose computers use a single programming language
designed for a specific type of application.

General-purpose computers are broadly classified as mainframe, super, per-
sonal, and laptop based on physical size, memory size, word size, processing
speed, number of peripheral devices supported, and network support. Mainframe
computers are found in installations where there is high demand for computer
power and a large amount of data to be processed. Supercomputers are extremely
fast machines used primarily for complex and scientific computations. Personal
computers (PCs) are found in homes, schools, libraries, businesses and other
small installations, and in laboratories where there are limited amounts of data to
process. Personal computers are used primarily for science and engineering appli-
cations, bookkeeping, writing, and personal use. The present generation of per-
sonal computers provides powerful computational capability. Laptops are small
portable computers with capabilities similar to those of personal computers.

Servers and workstations are special purpose machines. Servers are large com-
puter systems that store large varieties of programs and databases to provide service
to the organizations and people using the internet. Servers are the backbone of the
internet, which supports millions of users and many types of applications including
email service and e-commerce. Workstations are capable of performing large compu-
tations. They can be configured based on the memory and processing needs to be
stand-alone units with processing power and graphics capabilities, or they can be
connected to other computers for special activities such as email and internet access.

Most current computers store and then process the instructions one at a time
in a predetermined sequence and store intermediate results of computations.
Advances in hardware technology have made it possible to approach the limit of

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 3

4 Introduction to Computers and Programming

electronic speed. Further speed increase will be attained by packaging electronic
elements closer together so that the signals travel shorter distances. The electronic
speed limits the amount of computing the computer can complete within a given
period of time.

1.1.1 Hardware Components and Functions
The primary hardware components of a computer are the input/output
devices, memory units (both primary and secondary), and processing units.
The central processing unit (CPU) consists of the arithmetic-logic unit (ALU)
and the control unit (CU). The block diagram of a typical system is shown in
Figure 1.1. Large systems also have support hardware, which performs addi-

Figure 1.1 Block diagram of a computer

Input
devices

Magnetic
tape drive

Magnetic
disk

Output
devices

Computer

Main memory

 CPU

Arithmetic and
Logic Unit

(ALU)

 Control Unit (CU)

Peripherals

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 4

1.1 Concept of Computers and Computer Systems 5

tional specialized functions such as graphic display, networking, image pro-
cessing, or managing secondary storage. All of these are primarily electronic,
consisting of digital logic gates and circuits that control and drive the
mechanical processes.

Input/Output (I/O) Devices Input devices are used to input instructions and
data into the computer, usually in character form. Some installations use optical
scanners or magnetic scanner devices to read data on marked and printed paper
and transmit it to the computer memory. For some purposes, punched card read-
ers are used. Key entry devices, such as interactive terminals, are the most com-
mon form of input device used today. Instructions and data are typed at the
keyboard and the characters are transmitted directly or indirectly to main mem-
ory. In recent hand-held computers, such as the palm pilot, touch pen input
devices are used.

Output devices make the processed information available in the form of print-
outs, screen displays, graphics, sound and speech, or file output on a disk. The
most common output devices are printers, displays, graphics terminals, and disk
drives. A printer prints on paper the output information that was stored in main
memory. Some printers print characters one at a time like typewriters; others print
one line at a time. Dot matrix printers are usually used for rough drafts. Higher
quality output is produced by laser, chain, inkjet, and other special printers, such as
those needed for desktop publishing. Large computer installations use line printers
and higher speed laser printers. Magnetic storage devices such as tape drives and
disk drives are used for both input and output. Although they are peripheral
devices, they are part of the system. Magnetic storage devices provide secondary
storage. They hold large volumes (gigabytes and terabytes) of data in very little
space. Data values are coded in magnetic dots, representing zeros and ones. Mag-
netic devices are convenient, cost effective, and store information permanently,
but the data stored on them can only be read by computers. These devices come in
many different forms, with different access speeds and storage capacities.

Memory Devices Memory devices store both program instructions and data.
The main memory, also called random access memory (RAM), is used for storing
instructions currently being executed and data currently being processed. This is
fast memory with microsecond to nanosecond speed. The processor communi-
cates directly with the main memory, fetching instructions and fetching and stor-
ing data. Many of today’s desktop personal computers have more RAM, which

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 5

6 Introduction to Computers and Programming

makes them more powerful, and have greater processing speeds and capabilities
than the room size computers of only a few years ago.

Central Processing Unit The central processing unit (CPU) consists of the
control unit and the arithmetic-logic unit. The control unit (CU) contains elec-
tronic circuitry that fetches the instructions from memory and decodes them. The
decoded signals for the operation code and the operands are sent to the arithmetic-
logic unit (ALU), directing it to carry out the arithmetic and logic operations. The
CU stores the results of the arithmetic and logic operations in main memory. It
also supervises the input and output of data. The details of input and output are
usually handled by independent processors called input/output (I/O) processors.

The arithmetic-logic unit (ALU) contains the electronic circuitry that per-
forms standard arithmetic operations and makes logic decisions by comparing
values. The arithmetic circuits can add, subtract, multiply, and divide, using two
numbers at a time. The result of such operations is numeric. The logic circuits can
compare either numeric or character values. The output of the logic circuits is
interpreted as a logical value of true or false. The logic circuits can also perform
standard logical operations: selecting, testing, and altering logical values. In large
mainframe and supercomputers, the ALU often contains coprocessors so that
logic decisions may be made at the same time calculations are being carried out.
Coprocessors are also very common in microcomputers, especially when using
mathematically oriented languages. All computer instructions are based on these
elementary operations of fetching, arithmetic, comparison, and storing.

1.1.2 Software Components and Functions
A program is a sequence of instructions written in a programming language that
directs a computer in problem solving. The software in a computer system con-
sists of programs written to support the basic operations of the system and pro-
grams written to carry out an application. There are several levels of software
active at all times. Figure 1.2 shows some of these software systems and their
hierarchy.

The software that controls the execution of an application program is called
system software. The major system software components are the operating system
and the programming language systems, which include utility programs and
library routines. These programs keep the computer functioning efficiently and
provide a comfortable environment for the user. They allow the user to access
data in a variety of forms and to set up filing systems for data.

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 6

1.1 Concept of Computers and Computer Systems 7

Figure 1.2 Application and system software

Application program

Operating system

Language system

The operating system makes the system facilities available to the application
programs and controls their use. It provides access to a variety of programming
and debugging tools and provides an interface between the user and the computer
hardware. It schedules program execution and directs traffic through the com-
puter. The operating system manages all the system resources—allocating and
deallocating memory, processor, devices, and files to a particular application pro-
gram as they are needed. Operating systems have their own nonstandardized con-
trol languages. Instructions in these languages direct the computer to undertake
tasks and make resources available to the tasks. Every programmer needs at least
minimal knowledge of the control language of the computer being used.

System management is designed to balance processing and input/output, with
the aim of providing reasonable minimum turnaround and maximum throughput.
Turnaround is the amount of time elapsing between a request to the computer to
execute a program and the availability of output. Throughput is measured by the
number of jobs that are completed in a given time period.

With interactive systems, response time is also important. Response time is
the time lapse between interactive input and output that indicates that the input
has been received.

The operating system contains system utility programs and a system library.
System utility programs are data management and device management system
software. The data management software manages the formatting of the
input/output. The device management software makes the devices available as
though they are extensions of memory. The system library contains graphics
packages, mathematics packages, statistics packages, database management rou-
tines, and data communication and networking software.

The file management system, which is part of the operating system, controls
the storage and retrieval of records from program and data files, which are

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 7

8 Introduction to Computers and Programming

 normally stored on magnetic devices such as disks. It provides instructions and
data to memory as the processor needs them.

Language systems are classified as high-level or low-level depending on their
similarity to human languages or hardware languages. Languages that are reason-
ably machine independent and people-oriented are called high-level languages.
Compilers are language systems that translate programs written in high-level lan-
guages such as FORTRAN, C, and C++ into machine code, which the hardware
can interpret and execute directly. Assembly language and other machine-ori-
ented languages are called low-level languages. Programs written in assembly
language are also assembled (translated) to machine code. Compilers that trans-
late source code into particularly efficient machine code are called optimizing
compilers.

Application software consists of programs written to analyze data and solve
specific problems. Application programs produce output concerning the exterior
world, while system programs produce output concerning the state of the com-
puter system. Application programs may be written by users, but more often are
written by professional programmers. Programmers may write a program to com-
pute a payroll, for example, or to implement an automatic navigation system for
an aircraft. When adequate application software can be purchased, programmers
often modify it to their company’s specific needs.

When an engineer uses a computer to process data, the engineer uses an input
device to tell the operating system what application software to run. The application
program requests data, calls on the system library for routines that decode the data,
and converts it into a computer-usable format. The application program then
processes the data, calling on the system library for standard mathematical routines
and for routines that convert the results to a form the engineer can understand. It then
calls on the file management system to store the results until the engineer needs them.

When an engineer writes his or her own application program, the program
must be thoroughly tested on the computer before it can be used to process data.
To do this, the engineer uses an input device to tell the operating system which
compiler to run. The engineer has prepared a sequence of instructions in the pro-
gramming language that are input as data to the computer and stored on a disk.
The compiler checks the instructions one by one for spelling and syntax, trans-
lates them into a machine-usable format, and calls on the file management system
to store the results until they are needed. Before finishing and returning control to
the operating system, the computer sends error messages and program statistics to
the engineer.

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 8

1.1 Concept of Computers and Computer Systems 9

Before an engineer writes an application program and submits it to the com-
puter it is necessary to design the input layout of the data, the output layout of the
computational results, and to thoroughly think through the steps involved in pro-
cessing the data.

1.1.3 Integration of Hardware and Software
Hardware cannot function by itself without software; software cannot function
unless it has hardware to run on. Both are necessary to make a computer system
work properly. Programs written in high-level languages go through several levels
of translation and interpretation before the machine can execute them. Application
programs written in C are translated by the compiler into a machine language that
is then interpreted for execution by the digital logic gates and circuits.

1.1.4 Review Questions
1. A computer system consists of both and

.
2. Three major hardware components of a computer are

, , and
.

3. A compiler translates a high-level language program to
.

4. The arithmetic-logic unit of a computer performs
and operations.

5. Machine language instructions are fetched and decoded by the
unit.

6. Input/output operations are controlled by the unit.
7. The input devices handle instructions and data in

form.
8. Common secondary storage devices are and

.
9. Programs written to manipulate data and solve problems are called

software.
10. The central processing unit consists of ,

, and .
11. The program in a computer system that manages the computer

resources is called an system.

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 9

10 Introduction to Computers and Programming

12. Software programs permanently installed to control equipment are
called .

1.2 Modular Programming
Modularization is the process of breaking down a complex problem into easily
solvable, manageable, and functional units. Modularization is based on the con-
cept of “divide and conquer.” For example, some problem solutions have the form:

1. Get data

2. Process data

3. Output results

Other problem solutions may have the form:

1. Set up a table

2. Put data in the table

3. Analyze the table

4. Output the results

The process of modularization would then call for more detailed descriptions as
to where to get the data, how to validate it, how to process it, how to arrange it in
a table, how to analyze it, and so forth.

To understand and analyze a complex problem may be difficult, but once the
problem is subdivided into smaller understandable pieces called subproblems, it
is easier to understand the original problem and design a process to solve it.

1.2.1 Modular Design
The first step in modular design is to divide the complex problem into major sub-
problems. Then the major subproblems are divided into further sub-problems
until they are simple to solve. The problems and subproblems are called modules.
Modules should be designed in such a way that they are loosely coupled. Loose
coupling simply means that if a change is made in any of the modules it does not
force change in other modules. There are two types of modules: functional mod-
ules and spatial modules. A module with a specific function or task to perform is
called a functional module. If there is a repeated process in several places in the

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 10

1.2 Modular Programming 11

overall design, such a process can be made into a module and such a module can
be used to replace the repeated process. It is called a spatial module. The C pro-
gramming language provides the facility to represent these functional and spatial
modules so that they are loosely coupled.

During the design process the user requirements are spelled out. A prototype
of the design is developed and tested to see whether it meets the requirements.
During the design process the designer must document the design and provide the
capability for future updates. The design steps may be repeated several times
before writing the application program, to eliminate any design flaws. If there are
any design flaws in the solution algorithm, it may be too late to correct them
when the final product is found to be functionally incorrect. Therefore, we cannot
overstress the importance of the solution algorithm design process. This is the
most crucial phase in the development of any software.

1.2.2 Structure Charts
A structure chart is a design tool that represents the functional and spatial mod-
ules of the algorithm and their relationship to one another. In a structure chart, the
statement of the problem to be solved is represented in the form of a rectangular
box at the top level. For example, in Figure 1.3 “Calculate the square root of a
number” is the statement of the problem. The functions in the next level are repre-
sented in rectangular boxes horizontally from left to right in the order in which
they are activated. If there is any function in the second level that needs to be fur-
ther divided into subfunctions, they are represented in the next level. The func-
tions at each level are represented from left to right and the further subdivision of
the functions at each level is represented vertically.

Figure 1.3 Structure chart

Calculate the square root of a number

1 2 3

Compute the square
root

Output the square
root

Input the
number

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 11

12 Introduction to Computers and Programming

The structure chart represents the analysis of the problem of calculating the
square root of a number. It also represents program modules. The module “Calcu-
late the square root of a number” invokes the modules beneath it, passing data
back and forth to them.

1.2.3 Functional Modules
Modules communicate with one another by passing information back and forth.
In C, these modules receive numeric values and manipulate them, and the result is
conveyed back to the invoking module. An invoking module is a function that
calls another function. C provides the facility to write these modules as independ-
ent units of a program. These units can be compiled, debugged, and tested inde-
pendently, then linked together into an executable program. Modules can be input
modules, computational modules, or output modules. There are a number of func-
tional modules available in C’s rich library of functions such as sqrt() to com-
pute a square root of a number or max() to compute a maximum of a set of values.
There may also be functional modules written by other people that are available
for use. Programmers write their own functional modules for specific problems
and, in addition, they can use standard library functions and library functions
written by other people, as they fit into their application. C is rich in library func-
tions, which will be presented throughout the text. The list of all library functions
is provided in Appendix B.

1.2.4 Review Questions
1. In modular design the large problem is divided into

.
2. What is the relationship between lower-level and higher-level mod-

ules in a hierarchy chart?
3. Modules must be tightly coupled. True or False? Explain.

1.3 Algorithms and Program Development
Solving a problem on a computer requires a thorough understanding and analysis of
the problem and of the potential data. Once the problem has been analyzed, the
detailed design of a solution can be developed. One of the steps in designing and

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 12

1.3 Algorithms and Program Development 13

developing a computerized solution to a problem is to develop an algorithm to solve
the problem. At the same time, the algorithm must filter out inappropriate data.

1.3.1 Concept of an Algorithm
An algorithm is a procedure consisting of a finite number of precisely defined
steps for solving a problem. Each step of an algorithm must be an unambiguous
instruction which, when written in a computer language, can be executed by a
computer. The order of the steps is critical, because most computers execute steps
in the order in which they are presented. An algorithm must terminate whether or
not the task is completely successfully executed. That is, it must recognize the
end of the input data and when an answer is sufficiently accurate. Algorithms that
monitor the weather, automatic teller machines, and nuclear reactors are continu-
ally active. These types of algorithms are apparent exceptions to the termination
requirement. However, they idle as they continuously poll input devices and are
normally reactivated as needed.

Programmers should choose an algorithm on the basis of efficiency, accuracy,
reliability, and clarity. Algorithms should be efficient with respect to computa-
tional time, storage requirements, and response time. The degree of accuracy
required is specified by the user. An algorithm is reliable when it consistently pro-
duces correct answers from valid data and rejects invalid data. Clarity means that
an understandable programming style is used. Clarity should not be compromised.
However, sometimes a compromise between the other factors is necessary. For
example, efficiency may be sacrificed for the sake of a high degree of reliability.

The design of algorithms to solve simple problems can be straightforward,
but design of algorithms for large, complex problems can be difficult and time
consuming. Although this text can only deal with simple problems, the techniques
we use are important in the design of algorithms for complex problems.

One common approach to large and complex problems is to use top-down
design. Top-down design starts at the top of the structure chart with a general
statement of the problem written in a precise, formal way to provide a high-level
specification of the algorithm. This is divided into separate logical parts and a

Programming Warning: Every step in the algorithm must be clear and precise
and the algorithm must terminate.

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 13

14 Introduction to Computers and Programming

general specification for the solution of these parts is given. These parts corre-
spond to major modules in the final algorithm. The parts are then further subdi-
vided and specifications are drawn up. Finally the algorithm reaches a stage
where the specification consists of computations, comparisons, and data access
that can be programmed without further explanation.

An Example of a High-Level Problem Specification Calculate, in pounds, the
total amount of steel required to build a pipeline to carry water.

The next step would be to divide the problem into logical parts as follows:

1. Input the pipeline dimensions

2. Check their validity

3. Calculate the cross-sectional area

4. Calculate the volume of steel

5. Calculate the weight

6. Output the weight

Each stage of the algorithm should be carefully checked before the algorithm
is written in a computer programming language and again before it is tested on a
computer. If the design is not proved correct at each stage, it may contain errors
that make it necessary to start over. Careful validation during the design process
leads to a more nearly correct solution.

1.3.2 Concept of Programs and Data
A program is a sequence of executable, unambiguous instructions written in a
computer language. The computer can understand instructions of various types:
input/output instructions to input data into the computer and output answers from
it; move instructions to rearrange data; arithmetic instructions to perform calcula-
tions; control instructions to control selection and repetition of actions; logic
instructions to help the computer make choices. These types of instructions are
available in most programming languages. In C there are also instructions to con-
trol where data is stored in the computer memory.

Input refers to data sent to the computer processor from a file on an automatic
storage device or from an outside source. Input may come from a keyboard or an
automatic device such as a weather station.

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 14

1.3 Algorithms and Program Development 15

Output refers to data sent out from the computer processor to automatic stor-
age devices or to an outside device or a person. Output may be printed, displayed
on a CRT screen, written on a tape, disk or diskette, plotted (rendered) on a
graphic device, or used to control an automatic device.

The internal rearrangement of data, during which values are copied from one
memory location to another, is achieved primarily through assignment instruc-
tions, which look like simple equations. For Example, the C instruction

a = b;

does not mean that a and b are the same things, but rather that a is being assigned
(given) the same value as b. In effect the value contained in the memory location
named b is copied into the memory location named a. After the statement a = b is
carried out by the computer the memory location a will contain the same value as
the memory location b.

Arithmetic instructions consist of the basic arithmetic operations of addition,
subtraction, multiplication, division, remainder, and exponentiation (raising to a
power), as well as assigning the answer to a variable. Thus,

a = 2.5 + 6.5 / 3.25;

means that 4.5 is calculated as the value assigned to a. Arithmetic expressions are
evaluated by the computer with the same operator precedence as they are evalu-
ated in mathematics. In this example, the division is performed before the addition.

Control instructions are used to switch from one set of instructions to another
depending on the logical comparison of data values. For example, the computer
might choose between addition or subtraction depending on whether a number is
positive or not.

if(x > 0)
z = x + 5;

else
z = x – 5;

Control instructions always involve the comparison of one value with another for
equality or relative size. All comparisons result in an answer of true or false,
which becomes the basis for a control decision. The logical comparisons are pre-
sented in Chapter 4.

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 15

16 Introduction to Computers and Programming

Concept of Data The collection of related information to be processed by an
application program such as temperatures to be averaged over a period of time is
known as data. Data can be numeric, character, or logical. Numeric data can be
written as decimal numbers, as integers, or in scientific notation. Numeric data
values are treated as numeric values even though they are written as strings of
digits and special characters. In C, character data values are written as characters
inside a single quote as ‘a’ or strings of characters inside double quotes as
“axbcd”. While C does not have a data type specifically for logical data, integers
are used to represent true and false. Zero is interpreted as false, and all other inte-
gers are interpreted as true.

NUMERIC DATA CHARACTER STRING DATA

254 “JAMES MILLER”

�52.75 “LMNOP3476”

0.125 “LEEMAN BROTHERS”

+17.357 “+17.357”

0.32987653E02 “+=23765”

Data values are usually stored in a file on the disk. A data file is a repository
to store data and contains a structured collection of data. Input data must be struc-
tured in a systematic way. Every program includes a description of the data struc-
ture so that the computer knows how to interpret it. If a program is to find its
input data on a disk, the data must be keyed into a data file. Input data can also be
keyed directly into an executing program. When data values are keyed directly, it
is particularly important that the program validate the data before using it. In
either case, the end of the input data must be recognizable. When data values are
keyed directly, a special control character is used as an end symbol.

Data generated by the computer for output can be of many types: solutions to
mathematical equations, numbers, pictures, graphs, textual material, or special
symbols. Output data must be formatted properly for the output device by having
appropriate vertical and horizontal spacing. Data must be in a usable form. Num-
bers printed or displayed should be arranged and labeled with headings, subhead-
ings, and whatever other identification is helpful.

Programming Hint: Check that input data is valid. Validation of input data is
critical.

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 16

1.3 Algorithms and Program Development 17

Output should be understandable, easy to use, and attractive. Good output is
worth the time expended in designing and formatting it.

Example: Tabular output (columns labeled)

PARTS INVENTORY REPORT (11/17)

PART NAME UNITS UNIT COST TOTAL COST OF UNITS
Bolts 50 0.50 25.00

Nails 500 0.01 5.00

Struts 200 0.10 20.00

.

Screws 400 0.05 20.00

Example: Interactive output (values labeled)

MATERIAL VOLUME
DIAMETER = 5 LENGTH = 10 VOLUME = 195.35

. .

DIAMETER = 8 LENGTH = 14 VOLUME = 427.85

Not all values calculated by a program are part of the output data. Such val-
ues as counts, intermediate computational results, and logical values that control
processing are internal data. Internal data also includes status flags for various
pieces of equipment and for functions of the operating system.

To a computer, data consists of more than just numbers or character strings. A
set of data values is identified as being of a particular data type, being written in a
particular notation, being suitable for certain operations, and being given a name
by which it can be identified. There also may be criteria for validity and attached
units of measurement. For example, data representing the speed of a car would be
numeric, be written with a decimal point, be called “speed” or “velocity,” be in
miles/hour or kilometers/hour, be used in arithmetic, or be used as output, and
would not be a negative number. Data representing an identification number
would be characters, written within double quotes, might be either alphabetic
characters or digits, and could be used only for comparison and for output.

Programming Hint: Make output readable and visually attractive. Use titles and
column headings. Align data. Output date and time in reports.

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 17

18 Introduction to Computers and Programming

1.3.3 Procedure for Problem Analysis
To analyze a problem, besides writing a precise specification of the algorithm, the
user should write precise specifications for the input and output data. These speci-
fications should include initial conditions and boundary conditions, such as those
associated with mathematical models and computational simulations, in addition
to the equations or formulas to be used. Some problems do not have exact solu-
tions. Such problems should be analyzed for ways of obtaining approximate solu-
tions, determining the quality of these solutions and the degree of accuracy
needed. Side effects, options, and possible disastrous cases must be considered.
Once the problem is clearly understood and the associated side effects are
resolved, programming can begin.

Problem Types and Solution Methods There are engineering and scientific
type problems requiring solutions for which empirical equations have been
derived with known and unknown variables. There are also problems for which
closed-form solutions are known using appropriate formulas with known and
unknown variables. There are other problems for which mathematical models
have been developed in the form of a process to be followed using dependent and
independent variables. All of these equations are solved by some appropriate
numerical scheme.

There are three basic types of solutions. First, when a closed-form solution to
a problem is known, the appropriate equations can be used in a program. Second,
when no closed-form solutions are known, or when the mathematical solution
involves trial and error, numerical methods can be used to approximate the solu-
tion. Third, some types of problems have so many independent variables that
rather than a single answer, a variety of possible solutions is desirable. In addi-
tion, there are problems having more than one solution where it may be satisfac-
tory to find any one solution rather than all of them.

Data Types The procedure for problem analysis includes analyzing categories
of possible input data. In some cases the input values are external to the program,
in other cases they are generated internally. When external data values are used,
the input must be validated by the computer according to clearly defined specifi-
cations as the computer cannot guess the intent of the person entering the data.
Data specification includes such requirements as the type of data expected
(numeric or character), the form of the data (integer, real numbers, complex num-

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 18

1.3 Algorithms and Program Development 19

bers, logical data, etc.), the size of the data (number of digits or characters), the
arrangement of the data (lists, tables, records, etc.), and any restrictions on the
range of the data values. For example, a set of measurements of the depth of
water in a lake might be assumed to contain at least one measurement; be posi-
tive, real numbers rather than integers; be significant to two decimal places; and
have a unit of measurement such as meters. Program documentation should state
this and the algorithm should check that the data meets these conditions.

1.3.4 Solution Design Methodology
Once the problem has been clearly stated and analyzed, and the details of the data
specified, the solution can be developed. This involves the actual design of the input,
output, internal data, the development of an algorithm, and the development of test
data for the algorithm. For example, the computer must know whether the data val-
ues consist of integers or real numbers and whether they are in normal decimal nota-
tion or scientific notation. It must know how many data values are expected and how
to identify the end of the list of data values. If the algorithm includes a repeated cal-
culation, assumed preconditions and postconditions must be recognized.

At the design stage, the algorithm can be represented by structure charts,
pseudocode and/or flowcharts, or by other logic representation techniques. Consider
the simple problem of calculating and printing the average depth of water in a lake
with a set of sample depth measurements. The basic steps in the calculation are:

1. Input, validate, and add the data values one by one, counting the
number of data values

2. Divide the sum of the data values by the number of data values

3. Print the average depth

The first of these steps includes repeated input, validation, and addition. The pro-
gram instructions must include information about the variables to be added and
incremented in the repetition loop, and how to detect the end of the data. The
instruction to calculate the average and print the average follows the repetition
loop. Step 1 will only work if there is an internal variable to use to accumulate the
sum of the data values, and an internal variable to use as a counter. Both of these

Design step: Describe the input and output formats.

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 19

20 Introduction to Computers and Programming

Figure 1.4 Flowchart to compute an average

Start

Initialize
count, total

Process positive values
in a set of data

Calculate average

Print average

Stop

must be cleared before any data is processed. The precondition for Step 1 is that
total = 0 and count = 0 where total and count are names for the internal variables.
The precondition for Step 2 is that count > 0. Therefore there must be at least one
positive data value.

The simplest pseudocode description of this algorithm is as follows:

initialize total and count
process positive data values in a set of data values
calculate average
print average

This could also be drawn as a flowchart as shown in Figure 1.4.

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 20

1.3 Algorithms and Program Development 21

In the flowchart in Figure 1.4, arrows indicate the flow of control while dif-
ferent shaped boxes are used for different types of operations. Unless there are
many data values to be processed the same way, the flow of control is strictly
from the top down.

The following is a pseudocode description of this algorithm that assumes
there is at least one valid data value.

Algorithm

Initialize the total and the count to zero (This is necessary to meet the first
precondition)

For each input data value greater than 0 (precondition: assume total ≥ 0, count ≥ 0
every time a new data value is obtained)

Add the data value to the total
Add 1 to the count

End for
Divide the total by the count to get the average depth (precondition; assume count > 0)
Print the average depth
Stop

This can be drawn as a flowchart as shown in Figure 1.5.
The steps in the flowchart in Figure 1.5 can be described either in language or

in mathematical notation. Note that we have not yet considered how to identify
the end of the data or how to control the repetition.

The part of the pseudocode that is bracketed by For and Endfor processes the
entire set of data values and can be drawn in flowchart form as shown in Figure 1.6.

Note that each data value is processed separately; therefore, there is a loop
back to obtain the next data value. This construct enters at the top and exits at the
bottom; but it exits only when there are no more data values to be processed.

Programming Hint: Note that totals and count must always be initialized to
zero to reflect the possibility that there may not be any data to process.

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 21

22 Introduction to Computers and Programming

For each input data value > 0 the part of the pseudocode that is bracketed by
If and Endif processes a single data value and can be drawn as shown in Figure
1.7.

Note that a positive value will be added to the total and the count will be
incremented. However, nothing will be done if a data value is not positive. Put
these For...Endfor and If...Endif constructs together with the preceding
sequential flowchart and we obtain the flowchart of Figure 1.8.

Pseudocode Pseudocode is a semiformal description of the steps to be carried
out by the computer, including steps that are to be repeated and decisions that are
to be made. There is more than one way of writing an algorithm in pseudocode.

Figure 1.5 Flowchart to compute average

Start

Print average

Stop

total 0

count 0

total

count

For each positive data value
total + data value

count + 1

total/countaverage

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 22

1.3 Algorithms and Program Development 23

Figure 1.6 Flowchart for repetition

Data value
found

Process data value

True

False

Figure 1.7 Flowchart for looping with counter

data value > 0

True

False

total total + data value
Count count + 1

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 23

24 Introduction to Computers and Programming

Another more detailed and mathematical way of describing this algorithm in
pseudocode would be:

total ← 0.0
count ← 0
For each input data value found

If data value > 0 (precondition: a data value was found)
total ← total + data value
count ← count +1

EndIf
Endfor
average ← total / count (precondition: positive data value was found)
print average
Stop

Note that several assumptions have been made: that there is at least one posi-
tive measurement, that the measurement is a real number rather than an inte-
ger (total is initialized to 0.0 rather than 0), and that a measurement of 0
doesn’t count.

The processing of a data value depends on the value being positive, which in
turn depends on an input value being found. This is shown by the two levels of
indentation in the pseudocode.

Convention for Writing Pseudocode

1. Summations and counters must be initialized to zero, and other vari-
ables that require initial values must also be initialized.

2. Assignment of values is shown by an arrow pointing to the left.

3. The beginning and the end of any selected calculation is indicated as
well as the basis for including or excluding it.

4. The beginning and the end of any repetition is indicated, as well as
the basis for continuing and/or stopping the repetition.

5. Conditional steps and repetition steps are indented.

6. Either words or arithmetic operations may be used for arithmetic.

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 24

1.3 Algorithms and Program Development 25

Figure 1.8 Flowchart to compute average depth

Data found

True

1

2

3

4

5

6

Start

Initialize total and count

Compute average

Print average

Stop

data value > 0

False

False

True

total total + data value
Count count + 1

7. The algorithm termination must be clearly indicated.

These conventions are demonstrated in the previous examples of pseudocode.

Flowchart A flowchart uses standard symbols to show different operations and
the order of execution of the steps of the algorithm. Lines and arrows are used to
show the flow of control. Figure 1.8 shows a flowchart for the problem of finding

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 25

26 Introduction to Computers and Programming

the average depth of water in a lake. Flowcharts help the programmer understand
the flow of control in complex algorithms.

Standard Flowchart Symbols Each flowchart symbol represents part of an
algorithm or program. When flowcharts are used in a structured way, symbols are
grouped together to form a single-entry, single-exit structure.

Process box: This is a rectangle with one control line leading into it and one
leading out of it. At the lowest level it represents a single instruction that com-
putes, moves data from one place to another place in memory, or carries out some
other type of data manipulation. At a higher level it represents a sequence of
instructions, which jointly implement a step in the program.

A function box: A process box that represents a complicated function that will be
implemented separately is drawn as follows.

Input/output box: This is a parallelogram symbol with one control line leading
into it and one leading out of it. At the lowest level it represents a single
input/output instruction. At a higher level it represents a sequence of input/output
instructions, which jointly implement an input/output step in the program.

Function

Statement

Input/output

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 26

1.3 Algorithms and Program Development 27

Decision box: A diamond-shaped symbol is used for the comparison of quantities
for equality. The comparison generates a true or a false answer, which is the basis
for a decision.

Execution follows either the path on the “true” branch or the path on the “false”
branch, but not both paths.

Connector: A small circle is used as a connector symbol when two flow lines
are to be coming together. Two lines are drawn into the circle and a single line is
drawn out of it. A connector is also used when a flowchart is too large to fit on a
single page or too complicated for all the lines to be drawn completely. In this
case, the circle has only a single line in or a single line out and is labeled to show
that parts of the flowchart are connected.

Flow lines: These lines are used to connect process boxes and decision symbols
in the order of the logic and control flow of the program. An arrowhead is used to
indicate the direction of the logic flow.

A flowchart that shows a step indicating input of data values must follow it with a
check to determine whether the input attempt was successful. If the values are to
be processed one at a time, they must be input one at a time. The flowchart loop
indicates the processing of individual data values only when there are values.
Note that the computer cannot identify the last data value. It can only detect the
presence or absence of a data value.

Decision
FalseTrue

AA

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 27

28 Introduction to Computers and Programming

Sample Test Data To test this analysis, we select a set of values, for example
23, 15, and 12 and work through the steps of the algorithm of Figure 1.8.

STEP 1 2 3 2 3 2 3 2 4 5
Count 0 0 1 1 2 2 3 3 3 3

Total 0 0 23 23 38 38 50 50 50 50

Data - 23 23 15 15 12 12 - - -

Average - - - - - - - - - 16.67

Output - - - - - - - - - - 16.67

The algorithm is correct with this ordinary data. However, using extreme data
may uncover errors—for example, if there are no positive data values.

STEP 1 2 4 5
Total 0 0 0

Count 0 0 0

Data - - -

Average - - 0/0

Output - - -

This is a logical and computational error. This situation could be detected by check-
ing the value of the count before computing the average, as shown in Figure 1.9.

At this stage of the design process, working with both words and a variety of
diagrams provides more insight into the solution than either method would by
itself. Errors found when working with the diagrams can be used to correct the
specifications, which in turn leads to changes in the diagrams. This feedback and
correction process should be repeated until the designer is satisfied that the solu-
tion is feasible with available computer resources. Any errors not found during
the design phase can be very expensive to correct later on.

Structure Chart Structure charts were introduced in Section 1.2.2 as a way to
show modularity. Since each step in an algorithm is a simple module, they can be
used to represent an algorithm. The steps in Figure 1.10 are numbered for easy
reference. The structure chart in Figure 1.10 corresponds to the levels of the

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 28

1.3 Algorithms and Program Development 29

Figure 1.9 Branching structure

False True

Stop

Compute
average

if count > 0

Print
average

Print error
message

Figure 1.10 Structure chart to compute average depth

Update count

2.2

Find average depth of water

Initialize
total and

count

1

Process each
positive value

2

Update total

2.1

4

Finish

3

Calculate
and print
average

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 29

30 Introduction to Computers and Programming

pseudocode. At the highest level of the chart is the statement of the problem solu-
tion. The next level contains the boxes that correspond to the major steps in the
solution. Below these are their substeps, down to as many levels as are necessary.
The bottom level of the structure chart describes the processing of a single data
value. The circular arrow indicates the repetition part of the structure chart. The
diamond shaped symbol indicates a conditional box.

The final part of the design process involves writing any necessary control
statements in the system command language of the computer. In general, these
will be statements to direct data to and from programs; to control the compila-
tion, linkage (collecting routines), and execution of programs; and to save out-
put from the compilation, linkage, and execution steps in appropriate files for
later use.

1.3.5 Concept of Structured Programming
The development of algorithms in top-down methodology should use only the
three basic control structures. A program is a sequence of steps; each step is an
instruction or a group of instructions to be executed by the computer. Some of the
instructions are executed only once; others are executed selectively; others are
executed repeatedly. The three basic language structures are the sequence struc-
ture, selection structure, and repetition structure.

Sequence Structure A sequence structure is one in which execution control
flows from one step to the next in sequence, without skipping any of the algorith-
mic steps, executing each step exactly once. This is shown in the diagram in Fig-
ure 1.11. An example of this structure written in C is:

stmt 1 x = 18.25;
stmt 2 y = 8.75;
stmt 3 z = x + y;

Design Step: Draw the structure chart, draw the flowchart, and write the
pseudocode.

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 30

1.3 Algorithms and Program Development 31

Figure 1.11 Sequence structure

stmt n

stmt 2

stmt 1

stmt 3

Entry

Exit

Selection Structure The selection structure gives the computer a choice of exe-
cuting one of a set of statements. Usually there are two alternative sequences, but
in some cases only one sequence, and in some cases many. Exactly one alterna-
tive must be chosen, and executed only one time. C has special constructs for the
selection structure. The diagrams for selection structure with one sequence and
two alternative sequences are shown in Figure 1.12 and Figure 1.13 respectively.
Notice that within the selection structure a sequence structure is embedded in one
or more branches with the entries at the top and the exit at the bottom. The fol-
lowing examples of these structures show the general forms in pseudocode and a
C equivalent.

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 31

32 Introduction to Computers and Programming

Figure 1.13 Selection structure with two alternatives

Entry

Exit

stmt 2

stmt 1

stmt 3

stmt 5

stmt 4

stmt 6

if
(condition)

False True

Figure 1.12 Selection structure with one alternative

Entry

Entry

Exit

Exit

stmt 2

stmt 1

stmt 3

if
(condition)

False True

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 32

1.3 Algorithms and Program Development 33

The pseudocode corresponding to each flowchart and an example of C code
are as follows:

if condition if (x > y)

stmt 1 {

stmt 2 x = –x;

stmt 3 w = x *5 – y / 2.0;

end if p = 20 * x * w;

}

if (condition) if (x >= 0)

stmt 1 {

stmt 2 z = 5 * x;

stmt 3 w = y + z;

otherwise p = n * m;

stmt 4 }

stmt 5 else

stmt 6 {

end if n = m * 5 – k * x;

p = n – 5 * r – s / t;

c = n + p;

}

Notice that in the second example there are two sequence structures: One embed-
ded in the left branch and one in the right branch with an entry at the top and an
exit at the bottom of each. The embedded sequences are contained between
braces (“{“ and “}”) in the C code.

Selection structures may be stacked and nested depending on the logic of the
algorithm. Symbols such as >=, =, *, +, /, �, etc., used in the C code will be
explained later. However, their meaning should be obvious. Stacked and nested
control structures will be discussed in detail in Chapter 4.

Repetition or Looping Structure The repetition structure contains one or
more instructions that must be executed many times. A diagram for one form of
this structure is shown in Figure 1.14. A pseudocode equivalent and C example
follow. C has special constructs for the repetition structures.

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 33

34 Introduction to Computers and Programming

Figure 1.14 Repetition structure

Entry

stmt 2

stmt 1

stmt 3

while
(condition)

False

The while and do while are the standard explicit repetition control structures
in C. The basic difference between them is that the while construct begins by test-
ing the condition as shown in Figure 1.14. The do while construct executes the
subordinate sequence first and then tests the condition.

For condition while(count < 10)

stmt 1 {

stmt 2 scanf(“%d”, &num);

stmt 3 sum = sum + num;

End for count = count + 1;

}

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 34

1.4 Program Processing 35

The detailed implementation of the input statement scanf(“%d”, &num) and the
control structure while(count < 10) with their syntax and semantics will be
explained in Chapters 3 and 4.

1.3.6 Review Questions
1. What is an algorithm?
2. What is a program?
3. Explain top-down design methodology.
4. Why is it important to validate algorithm design?
5. What does an assignment instruction do?
6. Name some different forms of computer output.
7. What are the fundamental types of instructions in any program-

ming language?
8. What kind of data can computers process besides numbers?
9. Information supplied to an application program is called

.
10. Information produced by an application program is called

.
11. Data generated within a program that is not part of the output is

called data.
12. What is data validation?
13. What is pseudocode used for?
14. What is a hierarchy chart used for?
15. What is a flowchart used for?
16. Why is the format of the output data important?
17. Why are reliability and efficiency important?
18. What are control instructions used for?

1.4 Program Processing
Once the design is complete, the computer program can be written. This con-
sists of source code (data specification and instructions for the computer to
interpret) and documentation (comments that document the code and the whole

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 35

36 Introduction to Computers and Programming

programming process as an aid to the programmer and other people who may
need to read or alter the code). When the code appears to be error-free, it is sub-
mitted to the computer for compilation. The compiler not only converts the
source code to object code, it checks for errors in grammar, spelling, and punc-
tuation. Usually it is necessary to compile code several times, making correc-
tions, before it compiles correctly. The resulting object code is linked to
modules from the system library. Again there is a possibility of error if all of the
modules are not linked properly. When a program finally links correctly, it is
executed using input data and providing output data that then needs to be veri-
fied and validated. When consistently correct output is obtained, using all types
of input data, the program is ready to be used. At that point the programmer fin-
ishes the documentation. The details of documentation standards in the C lan-
guage will be discussed in Chapter 2.

1.4.1 Program Coding
Source code should be written and tested one module at a time, corresponding
to the submodules of a complex hierarchy chart or flowchart. As it is written,
comments are included in the source code, documenting the purpose of the
module, the input and output variables, the formula used, and anything else that
clarifies what is being written. When a module is finished, it should be care-
fully read and tested by hand, using representative data before being tested on
the computer.

The C language includes input and output statements, arithmetic assignment
statements, if structures, while structures, a statement to mark the end of the pro-
gram—everything that has been included in the hierarchy chart, pseudocode, and
flowchart examples.

Consider the simple example of finding the sum of the numbers from 1
through 100 by generating them and adding them. The pseudocode and the corre-
sponding C source code would be as follows:

Implementation Step: Desk check the computer source code before compiling
and executing it.

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 36

1.4 Program Processing 37

#include <stdio.h>

int main()

{

int sum, number;

sum ← 0 sum = 0;

number ← 1 number = 1;

For number � 100 while(number < 101)

sum ← sum + number {

number ← number + 1 sum = sum + number;

Endfor number = number + 1;

print sum }

printf(“%d\n”, sum);

return 0;

}

The C source code instructions outside the outer braces are instructions to the
compiler. The outer braces enclose the C language equivalent of the pseudocode.
The inner braces correspond to the indentation in the pseudocode; the beginning
and then the end of the instructions that are to be repeated. Note that all of the
instructions are necessary, if the sum were not cleared in the beginning, it might
give a wrong answer. If the number was not started at 1, the code would not
meet the specifications of summing numbers from 1 to 100. The summation
takes place by adding each new value of a number to the accumulated sum.
Then the number is incremented to the next value. The repetition is controlled
by checking whether the current value of the number is < 101. If that check were
missing, or if the number was not incremented, the repetition would never end.
Whenever an algorithm contains repetition, the termination condition must be
reachable. The details of this code will be discussed in the next chapter. For now
it is enough to recognize its relationship to the examples given in discussing the
design method.

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 37

38 Introduction to Computers and Programming

1.4.2 Program Compilation
The first step in testing and debugging a program on the computer is compilation.
During this process, the computer checks whether the program has syntax, punc-
tuation, or spelling errors, that is, that it follows correct grammatical rules for C.
If it appears to be all right, it is translated into machine code.

Note that the compilation process does not detect incorrect spelling of the
names of library modules or other separately compiled modules. It also does not
detect errors in the description of input and output data. And it does not detect
errors in logic that lead to wrong answers, nonterminating repetitions, or impossi-
ble situations such as division by zero. Any mistakes in defining the lower-level
modules of a complicated problem will not show up until later.

When the compiler detects an error, it identifies the location of the error and
indicates what is wrong. It is up to the programmer to go back and fix the source
code before compiling it again. Of course if any program logic is changed, it may
be necessary to desk check the source code once more, using the sample data.

When the program compiles correctly, it produces object code and a list of
the other modules needed. These are either stored for later use, or submitted to the
linker in the program execution phase of the process. A program that compiles
correctly does not need to be compiled again.

1.4.3 Program Execution
After the main program and any submodules have been written and compiled cor-
rectly, the resulting object modules are linked along with any mathematical or
other library routines needed, and a single executable module is built. The process
of building an executable module, or linking, is shown in Figure 1.15. The linkers
and loaders of the operating system are responsible for building the executable
module and executing it. If these system routines detect errors, corrections must
be made to the appropriate source code module, any changed modules are recom-
piled, and the linking is repeated.

When the program is finally executed, the computer carries out the program-
mer’s instructions in logical sequence, accepts the designated input, performs the
required calculations, and produces output. The output includes messages indicat-
ing whether the execution contained errors and statistics about the computer
resources used. When there are execution errors, the source code must be cor-
rected and the program recompiled, re-linked, and re-executed. The programming

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 38

1.4 Program Processing 39

Figure 1.15 Program compilation and execution

Linker/Loader

Preprocessor/Compiler/
Assembler

Program
execution

Output data

Input data

Library

Relocatable object code

Executable code

C code (instructions)

is finished only when the program terminates normally, producing correct
answers without any execution errors.

1.4.4 Program Testing
Program development is almost never error-free. However, it would be better to
develop a correct program than attempt to find errors in an already completed
program by repeated recompilation, linking, and execution. Errors may be of
many types, such as data specification, problem specification, program design
errors, implementation errors, typing errors, logic errors, and data input errors.
Errors are detected at different stages of the programming process. The errors in a
program are called bugs, and the process of detecting and removing them is
called debugging. It is desirable to detect any error as early as possible in the

Program Warning: Computers will not allow the linking and execution of pro-
grams with compilation errors.

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 39

40 Introduction to Computers and Programming

 programming process to minimize the changes and avoid extra implementation
cost and effort.

Logic errors are the hardest to detect, since programs may produce incorrect
answers. To check the accuracy of the logic, it is necessary to know in advance
what the answers should be for certain sets of test data. Before a program can be
used to produce new answers, it must be run with typical data for which the
answers are known. It must also be run with extreme data that has known
answers. If the computer does not produce the correct answers, there is probably
something wrong with the specifications or with the design of the program. A cor-
rect program not only produces correct answers for valid data, it diagnoses
invalid data and processes it appropriately.

Logic errors may be caused by careless copying of numbers, formulas, or
data formats. Because it is very hard to find typographical errors, sometimes it is
helpful to have another programmer look at the code. Explaining the code to
someone else is also a good way of finding logic errors.

Some programming languages have built-in tools for testing, and some installa-
tions have system and software tools for testing for correctness. Use these aids when-
ever they are available. When they are not, build programs using extra output
statements so that you can see what is happening at intermediate stages of processing.

Testing is a process intentionally designed to find errors in programs. This
must be done systematically. Each module must be separately tested for errors and
when the modules are put together, the results must be tested further. Any time a
change is made, there is the possibility of introducing more errors. Not only must a
program give correct answers to correct input, it should be able to detect incorrect
input. It should also avoid giving incorrect answers for accurate but unusual input.

Testing procedures for large, complex systems are extensive and detailed. The
test cases must be carefully designed to check the entire system. In general, the peo-
ple testing the system should not be the same ones who design and implement it.

Programming Hint: Test the program for correctness using specially designed
sets of data that test all the statements of the program.

Programming Hint: Echo print input data until the computed results are accu-
rate.

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 40

1.4.5 Program Documentation
Documentation, an important part of software development, should be carried out
simultaneously with design. Documentation is used to keep track of the design
process and to keep track of implementation and testing. It becomes part of the
final system, to be used by the programmers who will maintain or modify the sys-
tem. There are two types of documentation, system documentation and program
documentation. System documentation includes functional descriptions, introduc-
tory manuals, reference manuals, installation manuals, user manuals, and so forth.
Program documentation includes all phases of program development documents.
It should include:

• Statement of the problem
• Glossary of input/output variables
• Description of each module of the program
• Error messages produced by the program and their causes
• Security measures to be incorporated in the program to protect the

programs and data
• Test data to be used in program modification

Some of the program documentation is part of the source code of the program.

The total documentation package should include everything anyone who uses
the system needs to know about the system. It should be organized according to
the needs of the various people who deal with the system.

Once a programming project has been completed and proven useful, it takes
on a life of its own, outliving the immediate need, the programming team, and the
hardware. Therefore, modifications become inevitable.

Documentation may need to be changed any time changes are made to the
program. Just as there are various versions of the source code on the computer, so
there will be various versions of the documentation.

Programming Rule: Program code must be documented.

Programming Objective: Write easy-to-maintain source code and easy-to-
understand documentation.

1.4 Program Processing 41

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 41

During the life of a production program, further modifications will be needed
to meet changing situations and to correct previously undetected errors. All useful
programs can be expected to evolve to meet changing circumstances.

1.4.6 Review Questions
1. What does a compiler do?
2. What does a linker do?
3. The language in which the program is written is called

code.
4. The compilation process produces code.
5. What does a loader do?
6. List the types of errors according to developmental stages.
7. Give two reasons why documentation is important.
8. The process of locating and correcting errors is called

.
9. Why is it important to test a program with data that intentionally con-

tains errors?

1.5 Program Processing Environment
There are two ways to look at a processing environment: as a computer system
environment or as a programming environment. The system environment in
which the program runs is characterized as single-user or single-job, time-shar-
ing, multiprogramming, or multiprocessing. The programming environment is
batch, interactive, or real-time.

1.5.1 Computer System Environment
A single-job environment is one in which only one program at a time can be
loaded into the computer for execution. All the system resources in such an envi-
ronment, such as disk, memory, and processor, are allocated to a single job. Once
the job is completed, all the system resources are released.

Most mainframe computers and minicomputers and some microcomputers
support a time-sharing environment. A time-sharing environment is one in which

42 Introduction to Computers and Programming

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 42

several users can have access to the computer at the same time, running different
programs. Multiprogramming, multiprocessing, and parallel processing are all
different forms of time-sharing environments.

In a multiprogramming environment, several executable programs can exist in
memory at the same time, but only one program is active at any given instant. The
programs that are loaded for execution will take turns using the time and resources
available within the time limit allocated to each. In a multiprocessing environment
there is more than one CPU, making it possible to execute several programs
simultaneously. Alternately, several processors may be working on the same pro-
gram at the same time. In a parallel processing environment, the program is parti-
tioned into blocks that can be executed in parallel by different processors.

1.5.2 Programming Environment
Programming environments are designed for different user needs. In batch pro-
cessing, programs are executed when it is convenient for the computer installation.
Usually large amounts of data are involved and the actual time of execution is not
critical. In interactive processing, programs are executed while the user waits
online for the output. Real-time processing is used to directly control equipment.

Batch Processing In multiprogramming and multiprocessing environments, the
batch processing mode is commonly used for program testing and for numeric
applications. In batch processing, the operating system takes control of the pro-
gram. The computer schedules and controls program execution. Several jobs may
be entered through terminals, or loaded from disk files, and left to be executed
when sufficient time is available.

Jobs submitted in a batch environment are stored on the disk (spooled) and
scheduled by the operating system according to the priority of the job and the
resources it needs. The output is spooled to the disk print file so that it can be
printed once the program has terminated and the printer is available.

Batch processing is used when there are large amounts of data to process, or
when time is not critical. The output usually consists of reports. Batch processing
cannot be used when the user must interact with the program, processing transac-
tions, correcting drawings, or directing choices. Batch processing is used, how-
ever, for updating an online transaction system when the transactions can be
collected and processed at a single time, for example, at the end of the day.

1.5 Program Processing Environment 43

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 43

44 Introduction to Computers and Programming

Interactive Processing In interactive processing, the user is in communication
with the computer system. Data values are entered through terminals and the user
expects an immediate response from the system. Output design may differ from
that sent to a printer. Interactive processing is primarily used for transaction pro-
cessing, changing permanently stored data, and retrieving information.

Several interactive terminals can be connected to a large computer system,
each one having access to the computer hardware and software resources. If there
are several users at the same time, the CPU will share its time with all of them.
There are various strategies for allocating time to a user. The operating system
attempts to keep all the hardware operating as near capacity as possible without
causing any user to wait very long. C is designed for both batch processing and
interactive processing applications.

Real-time Processing In real-time processing, when a computer is used to
directly control equipment, computer response must be as fast as data collection.
Embedded computer systems are real-time systems. Examples include a computer
onboard an aircraft that controls the autopilot, or computers that control nuclear
reactor cooling systems, space shuttles, pacemakers, power fluctuations, and
automobile ignition systems. Real-time systems are online systems that must
respond immediately to changing needs. They have critical time constraints. Such
systems are dedicated to single applications. C may be used for real-time applica-
tions in special hardware and software environments.

1.5.3 Review Questions
1. What is meant by time-sharing?
2. What is a batch-processing environment?
3. What is multiprogramming?
4. A multiprocessing system will have more than one what?
5. Why is real-time processing important?
6. Is interactive processing the same as real-time processing? Explain.
7. Why is programming for interactive processing different from pro-

gramming for batch processing?

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 44

1.6 Samples of Algorithms
The following examples show the design and development of algorithmic proce-
dures. These examples are chosen from engineering, science, and mathematics.
Each step of the algorithm must perform a single function. Together, the steps
must arrive at the desired solution. The algorithm must end. Each algorithm must
have a single entry point and a single exit.

The most common complications in learning to design an algorithm are the
need to detect data which would cause problems in a formula, the need to anticipate
that data may be missing, the need to count data, and the accumulation of totals. All
of these except totals and counting of totals are shown in the following examples.
The use of totals and counting have already been introduced in this chapter.

1.6.1 Resistance and Voltage of a Parallel Circuit
This example includes data validation.

Problem Compute the effective resistance and voltage of an electrical circuit
containing three resistances connected in parallel, with the current and resistance
as input data.

Data Three positive values for resistances, and a positive value for current (ohms).

Method The formula for the resistance R of a parallel circuit with resistances
R1, R2, and R3 and the voltage V assuming a current of I is as follows:

1/R = 1/R1 + 1/R2 + 1/R3

R1

R2

R3

V

1.6 Samples of Algorithms 45

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 45

Solved for the effective resistance R, this is

R = 1/(1/R1 + 1/R2 + 1/R3)

The voltage is computed from the following formula:

V = I � R

Algorithm in Pseudocode

Input R1, R2, R3, and I the resistances and current respectively
Check that they are positive
If so, compute the effective resistance:

R ← 1/(1/R1 + 1/R2 + 1/R3)
Compute the voltage using

V ← I � R
Output R and V, labeled
Stop

The algorithm is shown as a structure chart in Figure 1.16. The algorithm is also
shown as a flowchart in Figure 1.17. The structure chart and the flowchart show
the input of the resistances and current, and the output of computed effective
resistance and the computed voltage.

46 Introduction to Computers and Programming

Figure 1.16 Structure chart to compute the voltage of a parallel circuit

Compute
the voltage
V = I × R

3

Calculate the effective resistance and voltage
in a parallel circuit

1

Input
R1, R2, R3,
and I and
echo print

2

Compute the
effective resistance

R = 1/(1/R1 + 1/R2 + 1/R3)

4

Output R, V
labeled

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 46

1.6.2 Volume of a Sphere
The second part of this example introduces the use of a counter to control data input.

Problem Write an algorithm to compute the volume of a sphere of diameter d.
Output the diameter and the volume.

Method The volume of a sphere of diameter d is given by the formula:

r = d / 2
volume = 4/3 p r3

Data A positive real number is representing the diameter in inches.
The algorithm is shown as a structure chart in Figure 1.18. The algorithm is

shown as a flowchart in Figure 1.19. The input is the diameter of the sphere and
the output is the computed volume. The algorithm shows the calculation of vol-
ume for one sphere.

1.6 Samples of Algorithms 47

Figure 1.17 Flowchart to compute the voltage of a parallel circuit

Start

Stop

False

True

1/R = (1/R1 + 1/R2 + 1/R3)

Output R, V

Input and Output R1, R2, R3, I

V = I × R

if R1, R2, R3 > 0

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 47

48 Introduction to Computers and Programming

Figure 1.19 Flowchart to compute the volume of a sphere

Start

Stop

False

True

r = d/2

Input and output d

if d > 0

Output volume

 volume = 4/3 π r 3

Figure 1.18 Structure chart to compute the volume of a sphere

Compute the volume of a sphere

Input and
output d

Compute volume Output volume

Compute radius volume = 4/3 π r 3

31 2

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 48

Algorithm in Pseudocode

Input and output diameter d
If d > 0

Compute the radius
r ← d / 2

Compute the volume
Volume ← 4/3 � r3

Output the volume
End if
Stop

The preceding algorithm computes the volume for one sphere of diameter d. The
following algorithm shows the computation of the volumes of several spheres
with different diameters.

If the volume is to be calculated for 10 spheres, the algorithm is as shown in
the structure chart of Figure 1.20 and the flowchart of Figure 1.21.

1.6 Samples of Algorithms 49

Figure 1.20 Structure chart to compute the volume of 10 spheres of different diameter

2.2.1

Compute
radius

2.2.2

 volume = 4/3π r 3

2.3 2.4

Increment
counter

2.2

Initialize
counter

1 2

Compute the volume
 of a sphere

Compute the volumes of 10 spheres

2.1

Input d and
echo print

Compute
volume

Output
volume

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 49

Algorithm in Pseudocode

Count = 0
For each of 10 spheres

Input and output the diameter d

50 Introduction to Computers and Programming

Figure 1.21 Flowchart to compute the volume of 10 spheres for each diameter

True

Start

count = 0

count = count + 1

Stop

False

False

True

r = d/2

Input and output d

if d > 0

volume = 4/3 π r 3

Output volume

while (count < 10)

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 50

1.6 Samples of Algorithms 51

If d > 0
Compute the radius

r ← d / 2
Compute the volume

Volume ← 4/3 � r3

Output the volume
End if
Count = Count + 1

End for
Stop

The curved arrow in the structure chart shows that the calculation of volume is
repeated for different input diameters of spheres for spheres of different input
diameters.

This algorithm assumes that there are 10 data values. If there are fewer than
10 data values, an error check must be incorporated in the algorithm to output an
error message stating that there are fewer than 10 data values. The error message
must be in the exit from the while loop. Then the algorithm will be robust, mean-
ing that it is fail-safe.

1.6.3 Square Root Approximation
This example introduces the use of an iterative formula in a repetition structure
controlled by a predetermined limit.

Problem Write an algorithm to compute the square root of x by using the New-
ton–Raphson formula:

sk+1 = (sk + x/sk)/2 k ≥ 1

s1 = x/2 x > 0

This formula is based on the fact that

if sk =

then sk
2 = x and sk+1 = (+ x/)/2 = (+ x)/(2) =

Data A positive real value for x and a constant specifying the required accuracy.

x

xxx
2

xx

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 51

52 Introduction to Computers and Programming

Method The iterative solution of the problem assumes that given the value of x,
the value s1 is calculated. Then the formula for sk+1 is used repeatedly until suffi-
cient accuracy has been obtained. For k = 1 s2 = (s1 + x/s1)/2

k = 2 s3 = (s2 + x/s2)/2

.

k = n sn+1 = (sn + x/sn)/2

This process will continue until the difference between sk and sk–1 is less than, or
equal to, a predetermined value. When this happens, sk is accepted as the square
root of x. Note that the computer must be given explicit instructions about when
to stop an iterative approximation, otherwise the calculations would continue
indefinitely without ever providing an answer.

Algorithm in Pseudocode

Input the value of x > 0
Initialize limit

limit ← 0.0001
Calculate s1

s0 ← x
s1 ← x / 2
k ← 1

while(|sk – sk–1| > limit)
sk+1 ← (sk + x /sk) / 2
k ← k + 1

End while

Output x and sk as the square root of x, labeled.
The algorithm is shown as a structure chart in Figure 1.22. The algorithm is

shown as a flowchart in Figure 1.23. Later we will see that it is not necessary to
have all the different s values available at the same time. It is possible to write
this algorithm using only two names, for example sk and sknext.

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 52

1.6 Samples of Algorithms 53

Wherever possible an algorithm should be hand-checked before a computer
program is written. Assume that

x = 25.0

Then

s0 = 25.0

s1 = 25.0/2 = 12.5

s2 = (12.5 + 25.0/12.5)/2 = 7.25

s3 = (7.25 + 25.0/7.25)/2 = 5.349. . .

s4 = (5.349 + 25.0/5.349)/2 = 5.0113. . .

Figure 1.22 Structure chart to compute the square root of a number

Calculate the square root of x

Input x > 0 Output x, sk

labeled
s0 = x
s1 = x/2
k = 1

limit =
0.0001

Do while
|sk−sk−1| >

limit

sk+1 = (sk + x/sk)/2
k = k + 1

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 53

54 Introduction to Computers and Programming

The calculated value appears to be converging to 5.0, the correct square root. The
computer iteration will stop when two successive values of s differ by less than a
predetermined amount, in this case 0.0001.

1.6.4 Total Pressure of Gaseous Mixture
This example introduces a repetition construct controlled by an input value that
gives the number of data values. The data values are validated, and if found to be
invalid, an error message is printed and the process is terminated.

Figure 1.23 Flowchart to compute the square root of a number

True

Start

Stop

False

Input x > 0

Output x, sk and label

s0 = x
Limit 0.0001

|sk−sk−1| > limit

sk+1 = (sk + x/sk)/2
k = k + 1

s1 = x/2
k = 1

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 54

1.6 Samples of Algorithms 55

Problem Write an algorithm to compute the total pressure given the partial pres-
sures of perfect gases by using Dalton’s law of partial pressures of perfect gases.
The law states that the pressure exerted by a mixture of perfect gases is the sum
of the partial pressures of the gases.

Data Positive integers to specify the number of components of perfect gases in
the mixture and positive real values to specify partial pressures of the perfect gas
components in the mixture.

Method Given the partial pressures of the perfect gases A, B, C,, N as pA,
pB, pC,. . . ., pN, the total pressure is computed as follows:

Total pressure = partial pressure of gas A + partial pressure of gas B + partial

pressure of gas C + . . . + partial pressure of gas N

p = pA + pB + pC + . . . + pN

The structure chart is shown in Figure 1.24 and the flowchart is shown in Figure 1.25.

Figure 1.24 Structure chart to compute the total pressure from partial pressures

Compute total pressure from partial pressures

Input and output
the number of components

For each
component

Output the
total pressure

Print error
message

Add partial
pressure

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 55

56 Introduction to Computers and Programming

Algorithm in Pseudocode

Input the number of components in the gaseous mixture
Output the number of components
If number of components > 0

counter = 1
total pressure = 0

Figure 1.25 Flowchart to compute the total pressure from partial pressures

True

Start

Stop

False

False

False

True

True

Input and output the numcomp

If (numcomp > 0)

 counter = 1

 total pressure = 0

Data invalid

 while (counter <= numcomp)

Input and output partial pressure

If (partial pressure > 0)

 counter = counter + 1

Output total pressure Print invalid data

 total pressure = total pressure
+ partial pressure

Print error
message

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 56

1.6 Samples of Algorithms 57

For each component
Input and output the partial pressure
If partial pressure > 0

total pressure = total pressure + partial pressure
Else

Print error message
End if

counter = counter + 1
End for

Output the total pressure
Else

Output message “Invalid Data”
End if
Stop

1.6.5 Mass Flow Rate of Air Through Pipes
This example introduces a repetition construct controlled by the use of a known
final value. Two variables range through a set of values.

Problem Write an algorithm to compute the mass flow rate of air in a pipe
diameter d = 5, 10, 15, 20,. . . , 50 inches at pressures of p = 50, 60, 70,. . . , 100 psi
and a temperature of T degrees. Barometric pressure is pb psi and velocity is V
ft/sec. Compute the number of pounds of air per second flowing through the pipe.

Data Input positive real numbers to specify the universal gas constant, the
velocity of the air, and the temperature.

Method Given different diameters, different pressures, universal gas constant,
temperature of air, and velocity of air, compute the density of air from the follow-
ing formula:

γ =
p

rt

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 57

58 Introduction to Computers and Programming

Where: g is the density of air,

p is the absolute pressure,

r is the universal gas constant, which is 53.3ft/R, and

t is the absolute temperature in degree Kelvin.

The mass flow rate is computed from the equation

w = gq

Where: q is the flow rate in cubic feet per second and q is given by the equation

q = av

Where: a is the cross sectional area of the pipe in square feet, and

v is the velocity in ft/sec

Notice that the units must be converted.
The structure chart is shown in Figure 1.26 and the flowchart is shown in

Figure 1.27.

Figure 1.26 Structure chart to compute the mass flow rate of air in a pipe

Mass flow rate of air in a pipe

Input, r, t, and v
Output, r, t, and v

For each diameter compute
cross-sectional area

Compute density
of air

Compute
mass flow

rate

Output

For each pressure
compute mass flow rate

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 58

1.6 Samples of Algorithms 59

Figure 1.27 Flowchart to compute the mass flow rate of air in a pipe

Start

Stop

False

False

True

True

d = 5

p = 10

diameter = d/12

 while (d <= 50)

 while (p <= 100)

area = (π diameter2)/4

Input and output, r, t, and v

density = (p + 14.7) / (r × (t + 460))

q = area × v

w = density × q

Ouput mass flow rate w

p = p + 10

d = d + 5

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 59

60 Introduction to Computers and Programming

Algorithm in Pseudocode

Input the universal gas constant R for air,
temperature t and velocity v

For each diameter 5 � d � 50 inches
Calculate the cross sectional area of the pipe
diameter = d / 12.0

area =

For each pressure 50 � p � 100 psi

density of air =

volume flow rate = area � v cu.ft/sec
mass flow rate = density of air � volume flow rate
Output mass flow rate

End for
End for

Chapter Summary
• Modern computers are used to solve complex problems within a reasonable

amount of time. They are the backbone of modern internet technology.
They handle large amounts of data of different types in various applica-
tions. Modern computers are used in e-commerce and in various telecom-
munication technologies for the transport of data and voice. Computers
have become a part of the everyday tools of modern society.

• A computer system consists of both hardware and software. The hardware
components are the memory, processor, and input/output devices (peripheral
devices such as disk drives, tape drives, mouse, light-pulse magnetic charac-
ter readers, optical character readers, graphic display devices, and plotters
and printers). The input devices transmit the information to be processed into
the computer. Output devices return the processed information from the com-
puter system to the outside world. The processor performs the arithmetic and
logic operations on the information stored in memory under the command of
the control unit.

π diameter
sq ft

2

4

(.)
()
p

r t
+
+

147
460

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 60

Exercises 61

• The main software component is the operating system, which manages all
the system resources and provides an environment for the user to communi-
cate with the computer. Other software modules include the system utilities,
file management software, assemblers, and compilers. The most frequently
used application software modules include word processors, spreadsheets,
database applications, and presentation software.

• Programs written to solve various types of problems in different areas of
engineering and science are known as application software. These pro-
grams are written in high-level languages, compiled, debugged to eliminate
errors, linked with library routines, and executed.

• Solving problems on a computer involves several steps. The first step is to
describe the data and the problem. The next step is to divide the problem
into subproblems. The subproblems are divided further into understandable
and manageable units. This process, called modularization, is the major
design step. It involves various design aids such as pseudocode, structure
charts, and flowcharts. The other steps are implementation, testing, produc-
tion use, and maintenance. The design step also includes design of data for-
mats for input/output, an algorithm, test data, and testing procedure.
Documentation is written at each step. These steps are repeated until a pro-
gram is obtained that reliably produces correct results.

• An application program may run in a batch environment or an interactive
environment. The environment may be single-job, time-sharing, multipro-
gramming, multiprocessing, or real-time.

Exercises
1. Write an algorithm to compute the volume of a cylinder with diameter

d and height h and print the diameter, height, and the volume.

2. Write an algorithm to compute the volume of water in cubic feet,
flowing through a pipe of diameter d in feet, with a velocity of v feet
per second. The formula to compute the volume flow rate per second
is given by:

r = d/2

area = p � r2, and

volume = area � v

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 61

62 Introduction to Computers and Programming

The algorithm should print d, v, and volume, labeling the output.

3. Write an algorithm to compute the distance s fallen by an object in
free fall. The formula is:

s = s0 + v0 t + ½ a t2

where s0 is the initial position in feet, v0 is the initial downward
velocity in ft/sec, t is the time in seconds, and a is 32.2 ft/sec2. The
input values are s0 and v0. The output values are s and t where t = 0,
5, 10, 15, 20,. . . , 100.

4. Write an algorithm to compute the compression stress on a rectangular
steel column of width w and depth d subject to a compression load of p
tons for p = 10, 20, 30,. . . ., 50. It should print the cross-sectional dimen-
sions of the column, the cross-sectional area, the load, and the compres-
sion stress. Validate w and d as positive numbers.

area = w � d, and

stress = p/area

5. Write an algorithm to compute the area of a triangle given the three
sides of the triangle as a, b, and c. Use the following formula to com-
pute the area.

s = ½ (a + b + c)

area =

The algorithm should check that a, b, and c are each < s, and should
print the sides and the area of the triangle, labeled.

6. Write an algorithm to compute the distance covered in 25 min, 50
min, 75 min, 100 min, 125 min, and 150 min, if a car is traveling at a
speed of 80 miles per hour. Stop at 500 miles. It should print the time
t and the distance traveled for each value of t.

7. Write an algorithm to generate the sum of the Fibonacci numbers
between 1 and 100. Print the numbers and their sum. The formula for
computing Fibonacci numbers is:

fibn = fibn�1 + fibn�2

fib1 = fib2 = 1

s s a s b s c⋅ −()⋅ −()⋅ −()

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 62

Exercises 63

8. Write an algorithm to input a set of integer numbers, count and sum
the positive numbers, and also count and sum the negative numbers.
It should then print the count and sum of all positive numbers and the
count and sum of all negative numbers.

9. Write an algorithm to compute the minimum diameter needed for a
pipe to carry 2.22 N/s of air with minimum velocity of v m/s? The
air is at t�C and under the absolute pressure of p. Given the follow-
ing formulas

w = 2.22 N/s = gq, therefore, q = 2.22/g

Where w is weight flow rate
g is specific weight for air

minimum area a = , and

minimum diameter =

10. Write an algorithm to compute the kinetic energy of different disks of
mass m = 10 to 100 kg in increments of 10 and the radius r = 10 to 50
cm in increments of 10. The disks rotate at a speed of 500 rpm. The
kinetic energy is computed from the formula:

where i is the moment of inertia of a uniform disk given by the formula:

Where r is the radius of the disk in meters
m is the mass of the disk in kg

The angular velocity is computed as follows:

γ air =
p

rt
,

q

minimum velocity

4×()area / π

k
i

=
ω2

2

i
mr

=
2

2
.

ω
π

=
rev

sec rev

500

60

2

1
× .

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 63

64 Introduction to Computers and Programming

The algorithm must output the results in the form of a table as shown.

mass = 10
radius 10 kinetic energy = xx.xx joules
. .
radius 50 kinetic energy = xx.xx joules

mass = 20
radius 10 kinetic energy = xx.xx joules
. .
radius 50 kinetic energy = xx.xx joules

mass = 100
radius 10 kinetic energy = xx.xx joules
. .
radius 50 kinetic energy = xx.xx joules

39529_CH01_Reddy:39529_CH01_Reddy.ps 6/9/09 1:50 PM Page 64

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

