<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Human Population Growth: Lessons from Demography</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Agricultural R&D, Productivity, and Global Food Prospects</td>
<td>22</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Development, Productivity, and Sustainability of Crop Production</td>
<td>52</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Food Security: Why Do Hunger and Malnutrition Persist in a World of Plenty?</td>
<td>76</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Developing Food Production Systems in Sub-Saharan Africa</td>
<td>100</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>The Molecular Basis of Genetic Modification and Improvement of Crops</td>
<td>124</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Plants in Human Nutrition and Animal Feed</td>
<td>152</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>The Genetic Basis of Growth and Development</td>
<td>182</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Seeds: Biology, Technology, and Role in Agriculture</td>
<td>212</td>
</tr>
<tr>
<td>Chapter 10</td>
<td>Converting Solar Energy into Crop Production</td>
<td>240</td>
</tr>
<tr>
<td>Chapter 11</td>
<td>Plant Nutrition and Crop Improvement in Adverse Soil Conditions</td>
<td>270</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Life Together in the Underground</td>
<td>304</td>
</tr>
<tr>
<td>Chapter 13</td>
<td>Ten Thousand Years of Crop Evolution</td>
<td>328</td>
</tr>
<tr>
<td>Chapter 14</td>
<td>From Classical Plant Breeding to Modern Crop Improvement</td>
<td>360</td>
</tr>
<tr>
<td>Chapter 15</td>
<td>Crop Diseases and Strategies for Their Control</td>
<td>390</td>
</tr>
<tr>
<td>Chapter 16</td>
<td>Strategies for Controlling Insect, Mite, and Nematode Pests</td>
<td>414</td>
</tr>
<tr>
<td>Chapter 17</td>
<td>Weeds and Weed Control Strategies</td>
<td>445</td>
</tr>
<tr>
<td>Chapter 18</td>
<td>Toward a Greener Agriculture</td>
<td>472</td>
</tr>
<tr>
<td>Chapter 19</td>
<td>Plants as Chemical and Pharmaceutical Factories</td>
<td>500</td>
</tr>
<tr>
<td>Chapter 20</td>
<td>Urban Myths and Real Concerns about Genetically Modified (GM) Crops</td>
<td>530</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>552</td>
</tr>
</tbody>
</table>
Chapter 1: Human Population Growth: Lessons from Demography 1

1.1 The world population's rapid growth of the past 50 years is slowing. 1

1.2 Different theories of population growth seek to explain why growth rates change. 6

1.3 HIV infection is slowing population growth in Africa. 10

1.4 Improvements in the status of women are essential for reducing HIV infection, population growth, and poverty. 12

1.5 Migration within and between countries is an important population issue. 14

1.6 Population policies are often inconsistent. 16

1.7 Increases in population have been matched by increases in food supply, but hunger persists. 19

Summary 20

Chapter 2: Agricultural R&D, Productivity, and Global Food Prospects 22

2.1 Dramatic yield increases during the past 50 years have made food cheaper and more widely available than ever before. 24

2.2 Income growth will replace population growth as the major challenge to world food production capacity in this century. 27

2.3 The growth in demand for grain for animal feed will outstrip the demand for grains used in human foods. 29

2.4 A complete view of productivity changes includes the value of all inputs, not just land. 30

2.5 Agricultural land and labor productivity vary dramatically from country to country. 32

2.6 The exceptional productivity of the past 50 years is the result of agricultural research in the 19th and 20th centuries. 36

2.7 Many agricultural innovations must be adapted to local agroecological conditions. 38

2.8 Private investment in agricultural research and development is substantial and concentrates on commercially attractive technologies. 42

2.9 The impact of agricultural research occurs after a considerable lag, but the returns are impressive. 43

2.10 Protection of intellectual property rights (IPRs) promotes private investment in agricultural biotechnology. 44

2.11 IPR protection can also hinder research and development. 46

Box 2.1 Labor specialization evolved differently in factories and farming operations. 26

Summary 48
Chapter 3

Development, Productivity, and Sustainability of Crop Production 52

3.1 Directly or indirectly, plants provide all of humanity’s food. 54
3.2 Land use patterns in agriculture show increased intensity of resource use on arable land. 56
3.3 Modern agriculture depends on purchased inputs. 59
3.4 Applying science and technology to crop production in developing countries between 1955 and 1985 resulted in the “Green Revolution.” 62
3.5 The CGIAR institutes are catalysts for agricultural research in developing countries. 63
3.6 Biotechnology will contribute to the continued rise of crop yields in the 21st century. 65
3.7 The effects of intensive agriculture on the ecosystems are causing concern about its sustainability. 67
3.8 Weather and climate profoundly affect crop production. 70
3.9 Global climate change and global pollution will limit agricultural production in the future. 71

Box 3.1 Meat, Manure, and Subsidies 56

Summary 73

Chapter 4

Food Security: Why Do Hunger and Malnutrition Persist in a World of Plenty? 76

4.1 Food insecurity is widespread and pervasive in developing countries and is also found in developed countries. 76
4.2 Food insecurity and malnutrition are unlikely to disappear in the next 25 years. 79
4.3 Causes of insecurity include poverty, powerlessness, violent conflict, discrimination, and demographic factors. 82
4.4 Environmental degradation is a major cause of food insecurity and of serious concern for the future. 84
4.5 Strong social and economic forces will affect future food security. 85
4.6 Broad-based agricultural and rural development is needed to alleviate food insecurity. 88
4.7 Greater public investment in agricultural research and better management of natural resources will be required to eliminate food insecurity in developing countries. 90
4.8 Eliminating food insecurity will require other initiatives, such as tackling child malnutrition, resolving conflicts, and globalizing fairly. 92

Summary 95
Chapter 5

Developing Food Production Systems in Sub-Saharan Africa 100

5.1 Knowledge of agroecology is a prerequisite for developing appropriate technologies and farming systems that foster expansion of food production. 100

5.2 A clear understanding of traditional farming systems is essential for developing sustainable crop production systems. 103

5.3 Intercropping is the major mode of crop production in sub-Saharan Africa. 107

5.4 Traditional and modern farming and cropping practices face serious constraints that hinder increased food production by small-scale farmers. 109

5.5 The potential for sustainable food production in sub-Saharan Africa can be realized if people implement existing opportunities for improving current production systems. 113

5.6 Multistrata systems and integrated crop-livestock-fish systems are two other sustainable food production systems. 117

5.7 Integrated nutrient management and pest management are important tools of sustainable agriculture. 118

5.8 Varieties improved through conventional breeding and biotechnology hold promise for the future of SSA agriculture. 120

5.9 Nations must encourage sustainable food production by establishing necessary social policies. 121

Box 5.1 Both Population and Market Forces Drive Land Use Patterns in Africa 106

Box 5.2 Sweet Potato Cultivation in Rwanda: Constraints and Opportunities in Microcosm for Africa’s Agriculture 113

Box 5.3 Two Examples of Successful Pest Management in Sub-Saharan Africa 119

Summary 121

Chapter 6

The Molecular Basis of Genetic Modification and Improvement of Crops 124

6.1 Genes are made of DNA. 124

6.2 Genes code for proteins via the molecular trilogy: DNA, RNA, and amino acids. 130

6.3 By studying the inheritance of all-or-none variation in peas, Mendel discovered how characteristics are transmitted from one generation to the next. 134

6.4 Mitosis and meiosis are important cell processes during which genetic information is passed on from cell to cell or generation to generation. 137

6.5 Genes have a multipartite nature (regulatory and coding regions), and because the DNA of all organisms is chemically identical, genes and gene parts can be interchanged. 140

6.6 Restriction enzymes and bacterial plasmids permit the manipulation of genes in the laboratory. 141

6.7 Plant regeneration technology underlies the generation of genetically engineered plants. 145

6.8 Plant transformation depends on a “promiscuous” bacterium that transfers its DNA to the plant genome, or on the direct introduction of DNA using a “gene gun.” 147
6.9 Genomics will dramatically transform crop improvement. 149
Box 6.1 Plant Genomes Contain Mobile Elements That Contribute to Genome Evolution 129
Box 6.2 Plant Insertion Libraries Permit Scientists to Discover the Function of Unknown Genes 150
Summary 150

Chapter 7

Plants in Human Nutrition and Animal Feed 152

7.1 Plants and animals differ fundamentally in their nutritional requirements. 152
7.2 Carbohydrates and fats are our principal sources of energy. 154
7.3 Diets high in energy and in animal fats are linked to major diseases. 158
7.4 To make proteins, animals must eat proteins. 160
7.5 Plant breeding and genetic modification can improve the protein value of animal feed. 161
7.6 Vitamins are small organic molecules that plants can synthesize, but mammals generally cannot. 163
7.7 Minerals and water are essential for life. 166
7.8 Food plants contain many biologically active chemicals whose effects on the human body remain to be discovered. 167
7.9 The consequences of nutritional deficiencies are serious and often long-lasting. 170
7.10 Millions of healthy vegetarians are living proof that animal products are not a necessary component of the human diet. 172
7.11 Genetic modification of plants can permit more efficient use by animals. 174
7.12 Food safety has become an international concern. 174
7.13 Genetically modified plants and the foods derived from them are the subject of safety concerns and special regulations. 176
Box 7.1 Good Fats and Bad Fats 159
Box 7.2 Using GM Technology to Enrich Food Crops for Vitamins 164
Box 7.3 Biologically Active Peptides and Proteins in Food 169
Summary 179

Chapter 8

The Genetic Basis of Growth and Development 182

8.1 Plants are made up of cells, tissues, and organs. 183
8.2 Plant development is characterized by repetitive organ formation. 188
8.3 Environmental stimuli and hormones activate genetic programs that guide plant development. 191
8.4 In the first stage of development, fertilized eggs develop into seeds. 192
8.5 Formation of the vegetative body is the second phase of plant development. 196
8.6 Reproductive development involves the formation of flowers with their male and female reproductive organs. 200
8.7 The formation of fruits aids seed dispersal. 203
8.8 Cell death and senescence are integral processes of development. 204
8.9 Signal transduction networks relay environmental and hormonal signals to the nucleus to regulate gene activity. 205
8.10 Genetic modification of crops can redirect developmental processes. 207
Box 8.1 Plant Tissue Systems and Cell Types 186
Box 8.2 The Cell Is the Basic Unit of Life 190
Box 8.3 Plant Hormones 198
Box 8.4 The Genes That Determine Floral Organ Identity 202
Summary 210

Chapter 9

Seeds: Biology, Technology, and Role in Agriculture 212
9.1 Seeds, the products of sexual reproduction, accumulate nutritional reserves to support the growing seedling. 214
9.2 Seed maturation and entry into quiescence are important aspects of seed development. 217
9.3 Seed germination, seedling establishment, and seed treatments. 220
9.4 Seed production is often distinct from crop production. 224
9.5 Seed certification programs preserve seed quality. 226
9.6 Seed banks preserve genetic diversity for the future. 228
9.7 Seeds are the major delivery system for plant biotechnology. 231
9.8 The conflict over the “terminator gene technology” brought the importance of seeds in the delivery of technology into sharp focus. 234
9.9 A trait that is valuable in the final product can harm the seed’s ability to function as a propagule. 236
Box 9.1 Many Weeds Propagate by Seeds 218
Box 9.2 A Biological System to Prevent Unauthorized Propagation of Seeds 235
Summary 237

Chapter 10

Converting Solar Energy into Crop Production 240
10.1 Photosynthetic energy conversion: Photosynthetic membranes use light energy to produce ATP and NADPH. 241
10.2 In photosynthetic carbon metabolism, enzymes in the chloroplast stroma use energy stored in NADPH and ATP to produce carbohydrates. 245
10.3 Chloroplasts use photosynthetic energy to carry out other important processes. 248
10.4 Sucrose and other photosynthate are exported to heterotrophic plant organs to provide energy for growth and for storage. 248
10.5 Plants gain carbon dioxide at the cost of water loss. 251
10.6 Plants make a dynamic tradeoff of photosynthetic efficiency for photoprotection. 254
10.7 Abiotic environmental factors strongly limit photosynthetic efficiency and crop productivity. 256
10.8 How efficiently can photosynthesis convert solar energy into biomass? 260
10.9 Opportunities exist for improving photosynthetic performance. 262
10.10 Global change interacts with global photosynthesis. 264
Box 10.1 Efficiency of Food Production from Solar Energy to People 242
Summary 268
Plant Nutrition and Crop Improvement in Adverse Soil Conditions 270

11.1 Soil is a vital, living, and finite resource. 270
11.2 A soil consists of mineral particles, organic matter, nutrients, air, water, and living organisms. 273
11.3 The acidity, alkalinity and salinity of soils are important determinants of productivity. 275
11.4 Poor agronomic practices contribute to soil salinization and other types of soil degradation. 278
11.5 In the transpiration stream, water lost from the leaves must be replaced from the soil. 280
11.6 Plants require six minerals in large amounts and eight others in small amounts. 283
11.7 To be taken up by roots, minerals must dissolve in the soil solution. 284
11.8 Mineral deficiencies are prevented by applying organic or inorganic fertilizers. 287
11.9 Adaptations to water deficit and to adverse soil conditions are of great interest to plant breeders. 288
11.10 Crop resistance to water deficit can be improved. 292
11.11 Crops can be improved for efficient use of soil nutrients. 295
11.12 Crops can be improved for better performance on saline soils. 296
11.13 Crops can be improved for greater tolerance to acid soils. 299
Box 11.1 Farmer Participatory Breeding for Improving Barley Yields in Dry Areas 295
Box 11.2 Improving Maize Yields on Acid Soils 300
Summary 301

Life Together in the Underground 304

12.1 Fungi, bacteria, protozoa, and plant roots interact in the rhizosphere. 304
12.2 Rhizodeposition feeds the underground ecosystem. 306
12.3 Mineralization, the slow decay of soil organic matter, provides a steady stream of mineral nutrients for plants. 308
12.4 In flooded soils, the absence of oxygen creates a different environment. 310
12.5 Signaling between organisms in the underground is a complex process. 311
12.6 Mycorrhizae are root–fungus associations that help plants take up phosphate. 313
12.7 Cereals and most other plants use soil nitrate, but legumes have symbiotic bacteria that can use atmospheric nitrogen. 315
12.8 Rhizobium bacteroids live as symbionts within the root nodules of legumes. 317
12.9 Free-living bacteria and fungi also convert atmospheric N₂ into ammonia. 319
12.10 Biological warfare goes on in disease-suppressive soils. 320
12.11 When they infect roots, nematodes cause serious crop losses. 321
12.12 The agronomic practices of sustainable agriculture promote a healthy soil ecosystem. 323
Box 12.1 Is the World's Biggest Organism a Fungus? 307
Chapter 13

Ten Thousand Years of Crop Evolution 328

13.1 For 4 million years, people procured food by hunting and gathering. 328
13.2 Agriculture began in several places some 10,000 years ago and was a necessary condition for the development of civilizations. 331
13.3 Wheat was domesticated in the Near East. 336
13.4 Rice was domesticated in eastern Asia and western Africa. 338
13.5 Maize and beans were domesticated in the Americas. 339
13.6 Domestication is accelerated evolution and involves relatively few genes. 342
13.7 Crop evolution was marked by three major genetic bottlenecks for genetic diversity: domestication itself, dispersal from the center(s) of domestication, and plant breeding in the 20th century. 346
13.8 Hybridization has played a major role in the development of new crops, in the modification of existing ones, and in the evolution of some troublesome weeds. 350
13.9 Natural and artificial polyploids lead to new crops and new traits. 352
13.10 The sequencing of crop genomes provides interesting insights into plant evolution and new tools to improve crops. 354
Box 13.1 The Popol Vuh (Book of Dawn) of the Quiché Mayas and the Origin of Maize 340
Box 13.2 Genetic Uniformity and the Irish Potato Famine 349
Box 13.3 Who Owns the World’s Genetic Resources? 357

Chapter 14

From Classical Plant Breeding to Modern Crop Improvement 360

14.1 Plant breeding involves introduction, selection, and hybridization. 361
14.2 Genetic variation manipulated by selection is the key to plant breeding. 363
14.3 Hybridization creates variability by producing different sets of chromosome segments via sex. 366
14.4 The plant-breeding method chosen depends on the pollination system of the crop. 368
14.5 F1 hybrids yield bumper crops. 369
14.6 Backcrossing comes as close as possible to manipulating single genes via sexual reproduction. 371
14.7 Quantitative trait loci (QTLs) are more complex to manipulate than qualitative genes. 373
14.8 The Green Revolution used classical plant breeding methods to dramatically increase the yields of wheat and rice. 374
14.9 Induced mutations can produce new crop varieties. 377
14.10 Tissue and cell culture facilitate plant breeding. 378
14.11 The technologies of gene cloning and plant transformation are powerful tools to create genetically modified (GM) crops. 381
14.12 Marker-assisted breeding helps transfer QTLs and major genes. 382
14.13 Plant breeders have a long wish list for crop improvement. 383
Crop Diseases and Strategies for Their Control 390

15.1 Viral, bacterial, and fungal infections diminish crop yields. 390
15.2 Disease epidemics are caused by the convergence of multiple factors, many of which are commonly present. 393
15.3 Viruses and viroids are parasites that have only a few genes. 395
15.4 Plant-pathogenic bacteria cause many economically important diseases. 398
15.5 Pathogenic fungi and oomycetes collectively cause the greatest crop losses. 400
15.6 Chemical strategies for disease control can be effective but are sometimes problematic. 402
15.7 Plants defend themselves by using preformed defenses and by turning on defense genes. 404
15.8 Early plant recognition of a pathogen can allow effective defense gene activation, but successful pathogens elude the plant’s defenses. 405
15.9 Classical strategies of crop protection against pathogens have relied on identifying resistance genes in wild plant accessions and older crop varieties. 408
15.10 New strategies may use genes that encode specific antimicrobial compounds or genes for defense-activating “master switch” proteins. 408
15.11 Genetic engineers can make plants resistant to viruses by using genes from the virus itself. 409
15.12 The plant immune system can be activated so that it meets subsequent infections with a stronger defense response. 410

Box 15.1 The Genome of Xylella fastidiosa 400
Summary 411

Strategies for Controlling Insect, Mite, and Nematode Pests 414

16.1 Worldwide, crop yields are greatly diminished by a wide variety of pests. 415
16.2 Pest outbreaks are natural but have been increased by our agricultural practices. 419
16.3 Pesticides are valuable and effective pest management tools but must be managed wisely. 422
16.4 The goal of integrated pest management is to avoid pest outbreaks, using multiple strategies. 424
16.5 Modifying agronomic practices can keep pest populations down. 427
16.6 Plants defend themselves against pests with chemical warfare. 429
16.7 Breeding pest-resistant crop varieties can keep some pests at bay. 431
16.8 Pests can evolve to overcome plant defenses. 432
16.9 Genetic engineering can be used to improve plant resistance to pests. 433
16.10 How can people stop the development of pests that are resistant to pesticides or transgenic pesticidal crops? 437
16.11 Biological control relies on the use of predators, parasites, and pathogens to stop pest outbreaks. 439
Box 16.1 Are Natural Pesticides Safer Than Synthetic? 423
Box 16.2 The War Against the Hessian Fly 431
Summary 443

Chapter 17
Weeds and Weed Control Strategies 445
17.1 Weeds can be defined from anthropocentric, biological, and ecological perspectives. 445
17.2 Weeds reduce crop yield by interfering with the growth of crop plants, and weeds may also reduce yield quality. 451
17.3 Three approaches to weed management are prevention, control, and eradication. 454
17.4 Weed control is achieved by cultural, mechanical, biological, and chemical means. 455
17.5 Herbicides kill plants by disrupting vital, and often plant-specific, processes. 459
17.6 Weeds continue to adapt to attempts to control them. 461
17.7 The speed with which herbicide resistance evolves depends on the herbicide's site of action. 465
17.8 Biotechnology offers new strategies for managing weeds. 466
Box 17.1 Weeds That Fight Unfairly 452
Box 17.2 The Invincible Weed from Down Under 464
Summary 470

Chapter 18
Toward a Greener Agriculture 472
18.1 Many agricultural practices have adverse environmental and social effects both on the farm and away from the farm. 474
18.2 Public policies and government assistance often promote unsustainable agriculture practices. 477
18.3 Environmental accounting is a new way to formulate government policies. 479
18.4 Grassroots movements have brought about an increased public awareness of agriculture's environmental impacts. 481
18.5 Farming techniques to increase production and reduce environmental impacts. 484
18.6 Is there room for GM technology in sustainable agriculture? 491
18.7 An ecological approach could bring new solutions to sustainability. 492
18.8 On-farm research allows all parties to find the best solutions. 495
Box 18.1 Can Grain Production Be Increased by Using Less Fertilizer? 489
Box 18.2 Managing Biodiversity to Maximize Cattle Production and Wildlife Habitat 494
Summary 497
Chapter 19

Plants as Chemical and Pharmaceutical Factories 500

19.1 Harvesting biochemical diversity: Can (green) plants replace (chemical) plants? 501
19.2 Gene manipulation will let crop plants produce specialty chemicals and permit production of biologically based plastics. 506
19.3 Chemical production within a plant may offer economic advantages over fermentation. 508
19.4 Extraction, purification, and energy costs can greatly influence the success of plant-produced chemicals. 510
19.5 Plant oils can be engineered for new industrial uses. 510
19.6 High-oleic soybean oil has been genetically engineered with improvements for both food and nonfood uses. 513
19.7 Potential impact of large-scale chemical production in temperate and tropical crops. 514
19.8 Will “plants as factories” biotechnology hurt the economies of developing countries? 516
19.9 Starch and other plant carbohydrates have a wide range of industrial uses. 517
19.10 Specialty chemicals and pharmaceuticals can be produced in plants. 518
19.11 Fermentation and in-plant production systems are complementary technologies that both depend on agriculture. 520
19.12 Plants are ideal production systems for diagnostic or therapeutic human proteins needed in large amounts. 522
19.13 Plants can be used to deliver edible vaccines for serious diseases of humans and domestic animals. 523

Box 19.1 Benefits of Using Plants to Produce Chemicals 504
Box 19.2 Will Producing Chemicals in Plants Raise the Cost of Food or Cause Even Greater Food Shortages? 506

Summary 526

Chapter 20

Urban Myths and Real Concerns About Genetically Modified (GM) Crops 530

Myth 1: The monarch butterfly is endangered by Bt corn. 530
Myth 2: GM plants will create superweeds. 531
Myth 3: GM foods have genes, whereas normal foods do not. 532
Myth 4: There are fish genes in tomatoes and rat genes in lettuce; transgenes will change the fundamental vegetable nature of plants. 532
Myth 5: GM foods are not natural. 533
Myth 6: When you transform plants, you don’t know what you are doing to the DNA. 533
Myth 7: This debate is not about economics but about food purity: Food suppliers will demand “GM free” foods. 534
Myth 8: Low-resource farmers in developing countries will not benefit from biotechnology. 535
Myth 9: Antibiotic resistance genes used to produce transgenic crops will horizontally transfer into microbes and thus exacerbate problems of
antibiotic resistance in human and animal pathogens. Transgenes will move from plants to gut microflora to humans. 536

Myth 10: GM crops are not adequately tested or regulated. 537

Health and Environmental Risks of GM Crops and GM Foods 538

20.1 The potential toxicity of new compounds entering the human food supply is thoroughly tested. 540

20.2 Special testing ensures that novel proteins are not allergenic. 542

20.3 Transgenic volunteer crop plants could become a nuisance in agriculture. 544

20.4 It is virtually certain that transgenes will flow from GM crops to other related plants. 546

20.5 Effects on nontarget organisms are difficult to investigate. 547

20.6 Careful management of GM crops is needed to avoid the emergence of resistant insect strains. 549

Box 20.1 Some Facts About Food Allergies 543

Box 20.2 Characteristics of Weeds and/or Weedy Relatives of Economic Species 545

Conclusion 550

Further Reading 551

Index 552
Just five decades have passed since Watson and Crick deciphered the double helix structure of DNA, the stuff of genes, and laid the groundwork for modern biotechnology. Today we know the full genetic sequence of more than sixty living organisms. The list includes human beings, over thirty important human pathogens, the photosynthetic plant *Arabidopsis thaliana*, plant pathogens, several *Archaea* from exotic environments such as ocean depths and hot springs, and nature’s own genetic engineer, the bacterium *Agrobacterium tumefaciens*, which for millennia has been transferring bacterial genes into plants to create new plant traits *Agrobacterium* finds useful. Two draft sequences of the rice genome were recently published, and by the end of 2002 an international public-private partnership led by the Japanese, expects to put in the public domain the full genetic sequence of rice, the world’s most important food crop and the genetic “Rosetta Stone” for all the cereals. Already the functions of many rice genes have been determined, and plant scientists throughout the world are using rice genome sequence data to improve productivity and disease resistance in rice and other crops.

In 2001, more than 5.5 million farmers worldwide planted about 52.6 million hectares of crops that were genetically manipulated (GM or transgenic crops, also called GMOs). This year the area has expanded further with India and Indonesia joining twelve other countries, including China, Mexico, South Africa, and Argentina, in approving the commercial planting of GM crops. But, agricultural biotechnology means a lot more than the creation of GM crops. It also involves the use of tissue culture to rapidly propagate disease-free seedling plants and to create new hybrids between plants that do not cross naturally, the use of sophisticated DNA-based genetic markers that allow breeders to follow and select for important traits more easily, and the use of DNA chips and other DNA-based diagnostic techniques to characterize pathogen populations for more effective deployment of resistant varieties. When we look globally we see that the real potential for public benefit from these technologies exists in developing countries where access to genetically improved crop varieties can mean the difference between hunger and a sustainable livelihood. These countries will need to draw on the best that science has to offer to help their farmers increase the productivity, nutritional value, stability of production, sustainability, and profitability of their crops. The task is to produce new crop varieties that are genetically altered to grow in poor soils and with less water, that use plant nutrients more efficiently, that can resist tropical pests and diseases—thus reducing yield losses—and that add micronutrients and essential amino acids to deficient diets. But, will this potential be realized?

Realistically, the question is no longer whether biotechnology will be used in food and agriculture, but rather how? We suspect the reason some people want to stop agricultural biotechnology, even when they understand its potential benefits, is that they do not believe those developing it will ever make the commitment to use it well and to use it equitably, and, therefore, they think biotechnology had better not be used at all. While we disagree with their conclusion, we believe they have legitimate concerns. We do need to establish more effective social and political processes to assure that biotechnology will be used wisely, that it will be made available to and used by public researchers to develop products that benefit people with limited purchasing power, and that these products will be made available for adaptation and adoption in developing countries.

While multinational corporations can help through public-private partnerships, for-profit companies will never make significant investments where there are no or limited...
markets. It is the international agricultural research centers of the Consultative Group on
International Agricultural Research and the public agricultural research systems in larger
developing countries that must assume responsibility for using these technologies to
produce new crop varieties that will benefit poor farmers. These public sector agricultural
research institutions need to be well supported both financially and technologically, in-
cluding development of new strategies that will help them reestablish effective collabora-
tion with advanced research institutes and universities in industrialized countries.

This second edition of *Plants, Genes, and Agriculture* with its new title *Plants, Genes,
and Crop Biotechnology* provides the historical context, the global perspective, and the
scientific information that students, scientists, development specialists, and knowledgeable
people will find highly useful in better understanding plant genetics, the potential of
agricultural biotechnology, and how biotechnology can help small-scale farmers everywhere
sustainably meet their food and income requirements.

Gordon Conway, President
Gary Toenniessen, Director of Food Security
The Rockefeller Foundation
New York, New York
We have published the second edition of *Plants, Genes, and Agriculture* with a slightly changed title to provide teachers and students of introductory courses in plant biology and crop science with a resource that will allow them to see their respective disciplines from a new vantage point. Our objective is to present an integrated view of crop biology, leading to a broad appreciation of plant biology and biotechnology in agriculture (for plant biology courses), as well as the basic biological underpinnings of crop biology and biotechnology (for crop science courses). The population explosion of the 20th century had a dramatic effect on planet Earth: huge areas with natural ecosystems rich in plant and animal life were converted to agriculture with dramatic consequences for the environment. Humanity’s challenge for the new century is to double food production and to do so in a sustainable way. To achieve these twin goals, people in all walks of life need to understand what it takes to grow crops, how progress in crop production was achieved in the past, and what the role of biotechnology will be in the future.

Many people in technologically advanced countries have become more interested in the ways that their food crops are grown and how they reach the markets where they shop. This interest results in part from a greater concern for nutrition and health and from a few scandals caused by breakdowns in the regulatory processes that assure the safety of our food supply. This concern about food presents us with an opportunity to educate people about the scientific principles that underlie crop production. We, therefore, view this text as being suitable for general education courses aimed at nonscientists.

Our topic is broad, and we discuss not only the natural sciences but the social sciences as well. Among the former are plant anatomy and development, plant physiology, molecular biology, genetics, plant breeding, evolution, ecology, soil science, pest and disease control, and biotechnology. Among the latter are such aspects as the economics of farming, trade policies, price supports, the funding of research, and the economic and social benefits of biotechnology.

The first chapter of this book deals with human population growth, and the news is fairly good. When we wrote the first edition in 1994, there was no end in sight to the human population explosion. Experts now agree that, barring unforeseen events, human population will level off at about 10 billion sometime during this century. This chapter, therefore, sets the stage for the challenge: doubling food production during the same time period.

The second chapter, written by two agricultural economists, describes the changes that have taken place in agricultural production as a result of developments that accompanied the industrial revolution, and emphasizes the role that science has played in this development. The tremendous economic return of investment in agricultural research justifies our subsequent focus on the scientific basis of increased crop productivity.

Chapter 3 looks at agricultural development from a biological vantage point and emphasizes the need to reach sustainability of this important human enterprise. The fact that directly or indirectly (as animal feed) plants are the basis of human nutrition leads to a discussion of the gradual intensification of plant agriculture throughout human history. The culmination of this intensification, known as the Green Revolution, raised food production in some developing countries to the point where they became food exporters; globally, the Green Revolution allowed food production to outstrip population growth in the last half of the 20th century.
The fourth chapter discusses a most difficult issue: Why are there 800 million hungry people in a world with adequate food for all? Clearly, our market driven economic system has not produced the result that many would like: equitable distribution of that food and food sufficiency for everyone. Purchasing power is the problem, but how we go about increasing it for the poorest of this world is a major challenge.

There are several reasons why we decided to devote an entire chapter (Chapter 5) to agriculture in sub-Saharan Africa. Sub-Saharan Africa is ecologically very diverse, and in Africa, the ecological dimension of crop production is most striking. In addition, the Green Revolution bypassed sub-Saharan Africa, in part because Africa has so many agro-ecological zones. Africa is the world’s only continent where food availability per person has declined in the past 30 years, so it provides the greatest challenge to the agricultural system. Chapters 2, 4, and 5 are new in this edition, and together with Chapters 1 and 3, they constitute a discussion of economic, sociological, and ethical aspects of feeding the world that transcend the strictly biological problem.

The second part of the book comprises the basics of plant biology, beginning with a discussion of the molecular basis of crop improvement in Chapter 6. To understand both plant breeding and genetic engineering, one must understand how genetic information (DNA) is transmitted from one generation to the next and expressed in a plant as the outward appearance, or phenotype. The principles of genetics and molecular biology can now be used to transfer genes between unrelated organisms (genetic engineering). This powerful and unprecedented technology has resulted in genetically engineered crops, here referred to as genetically manipulated (GM) crops, which are widely used in several countries. Examples of GM approaches to crop improvement are discussed in many subsequent chapters.

Plants feed people, either directly or indirectly, but what are our nutritional requirements and how do our food plants satisfy them? Do different plants and plant parts have different nutritional values? Do vegetarians have to take special precautions to eat a healthy diet? How can plants be bred to be more nutritious? Is this an area where genetic engineering can play an important role? The role of nutrients such as vitamins, minerals, or proteins is well defined, but what about the role of non-nutrients such as antioxidants in our diets? These and other questions are dealt with in Chapter 7.

People eat a variety of plant parts: seeds (bread, rice, beans), roots (carrots, cassava), tubers (potatoes), leaves (cabbage), stems (sugar cane), fruits (bananas and plantains), and even flowers (artichokes). Chapter 8 describes how these plant organs and tissues are produced from a single cell, the fertilized egg. First a seed is produced, and after it germinates the vegetative body of the plant develops. Flowers and fruits come later. This orderly sequence of events is under exquisite genetic and environmental control.

Chapter 9, a new chapter for this second edition deals with the biology and technology of seeds. Seeds are not only our most important food source, but they are also agents of plant reproduction. Companies produce elite varieties of crops and sell these to farmers primarily as seeds, often as hybrid seeds or as GM seeds. Essentially the economic value of plant breeding and biotechnology is captured in seeds.
Plant growth depends on the assimilation of carbon dioxide from the atmosphere utilizing solar energy (photosynthesis) and on the uptake of minerals from the soil and their subsequent assimilation into molecules that underlie plant structure and function. These processes are the subjects of Chapters 10 and 11, respectively. In addition to dissolved minerals, soil is also the source of water needed to maintain the transpiration stream. The productivity of crops depends heavily on managing the physical environment by adding nutrients, changing the acidity of the soil or supplying irrigation water. Barring such management, the plants experience stresses, and stress management is important for optimizing plant productivity. Conventional plant breeding and GM approaches to alleviating these stresses are also discussed.

Plant biologists usually study processes such as plant development, photosynthesis, or nutrient uptake using plants grown in isolation and without considering the interactions of these plants with other living organisms. In nature, however, plants interact directly with numerous other organisms (pests, pathogens, and symbiotic microbes, for example), and they depend indirectly on the activities of other microbes that participate in the cycling of nutrients. Nowhere are such interactions more intense than in the soil, and “life together in the underground” is the subject of Chapter 12. The soil contains a complex ecosystem in which millions of species interact with one another and with the roots of plants. This ecosystem derives its energy from root exudates and decaying roots and, therefore, from photosynthesis. Many of these soil processes are vital to the sustainability of agriculture, discussed later in the volume, and Chapter 12 marks the transition to the third part of the book, dealing with agriculture.

As a human activity, agriculture began millennia ago. Chapter 13 traces its origins and spread. People saved some of the seeds they harvested for the next year’s crop planting. These saved seeds captured the gradual evolution of our crops from their wild ancestors to the landraces of yesteryear and the present elite lines.

This leads to a discussion in Chapter 14 of plant breeding, the principal mechanism of crop improvement in the past and in the future. “Genetics is King” when it comes to raising crop productivity, and plant breeders use a variety of tools to genetically improve crops. Pure-line selection, back crossing, hybridization, embryo rescue of wide crosses, mutation breeding, and genetic engineering are all tools of the plant breeder. In addition, the new science of genomics is certain to speed up plant breeding considerably in the 21st century.

In the field, crop plants face stiff competition from diseases such as molds, from other plants (weeds), and from insects. Minimizing this competition is the subject of Chapters 15, 16, and 17, respectively. Diseases take their toll on the amount of the crop that the farmer harvests and genetic improvement of crops remains the best solution (Chapter 15). Because disease organisms evolve rapidly, however, this solution is never permanent and the plant breeder’s work is never finished. We are making rapid progress in understanding the molecular mechanisms involved in the plant’s defense mechanisms against disease organisms, and this will lead to new GM-based approaches to combat diseases.

There are many kinds of weeds, annuals and perennials, grasses and dicots; sometimes they closely resemble the crop, sometimes not. Weed control (Chapter 16) also takes several forms: manual removal (hoeing) is still very common on low-resource farms in de-
veloping countries, on organic farms in developed countries, and, when appropriate, on large farms. For many crops, chemical weed control has replaced mechanical hoeing in developed countries because it reduces labor costs. The newest refinement of weed control is to create GM crops that are resistant to certain herbicides. These crops are popular because they save the farmer money and reduce soil erosion.

Insects and other pests such as mites and nematodes can damage the parts of the plant that people want to harvest (e.g., seed weevils), or they weaken the plants so that their growth is diminished (rootworms) or the plants fall over (stem borers). Other insects such as whiteflies suck the products of photosynthesis directly from the circulatory system of the plant. As discussed in Chapter 17, because of the enormous losses sustained by farmers, insect and nematode control are of paramount importance to them. Again there are different strategies: genetic improvement of the crop as part of an integrated pest management approach is the best approach. This may be combined with biological control measures that include the release of predators or with chemical sprays that simply kill the pests. The latter method invariably results in the appearance of resistant pest strains. Genetic engineering with toxin genes from bacteria now provides a targeted approach to the killing of specific pests.

Chapter 18, “Toward a Greener Agriculture,” discusses the practices that make agriculture more sustainable. These practices view agriculture as part of a natural ecosystem, and their objective is to minimize the environmental impact of crop production. Adopting sustainable practices is usually tied to government policies that may reward farmers or discourage them from doing so. Sustainable agriculture is fully compatible with GM technology. Instead of adapting the environment to the crop plant, which has been a basis of agriculture throughout history, this technology has the potential to use new genes to adapt the plant to its environment, thus minimizing ecological impact.

At one time, agriculture supplied us not only with food but also with many other products that society needs. Many of these other products are now derived artificially, from petroleum or other industrial sources. For example, think of the replacement of cotton with synthetic fibers. This changeover was paralleled by the development of the chemical industry. Could (or should?) agriculture once again be used to produce the chemical feedstocks that industry needs, and what would be the impact of this on land utilization and on food production? Could plants be used to produce pharmaceuticals and vaccines? These fascinating questions are pursued in Chapter 19.

The final chapter in this book concerns the myths that have sprung up around GM crops. Groups opposed to this technology have introduced emotionally charged terms such as “genetic pollution” and “superweeds” into the discussion. Public polls conducted by reputable agencies have found that a substantial number of people believe that eating genetically engineered plants will cause their own DNA to be mutated. This chapter discusses some of these myths and forthrightly addresses some of the as yet unsolved problems associated with the adoption of GM crops.

We wish to thank the many people who made this second edition possible. First of all, the contributing authors of the chapters whose names are at the chapter headings responded enthusiastically to our call to update the first edition. This is as much their book as it is ours. Second, we are grateful to all the people who generously sent us pho-
tographs for inclusion in the book. Assembling the artwork from the far corners of the globe turned out to be a most arduous task, and we are thankful for all the help we received. We hope that they have all been acknowledged but fear that our record keeping is less than perfect. We received feedback from teachers, especially from Larry Grabau of the University of Kentucky, and from a number of colleagues who reviewed the chapters for accuracy. We are extremely grateful to our administrative assistant Milda Simonaitis who, for an entire year, worked tirelessly with the authors and with the publisher to help us go from concept to finished product. We are very thankful to Linda Purrington, the Golux, for making the writing styles of the various authors more uniform and polishing some of the rough edges when the writing was, well…, less than fluent.

Maarten Chrispeels would like to express his appreciation not only to his agricultural mentors, first at the School of Agriculture in Ghent, Belgium (1955–1960) and then at the University of Illinois (1960–1964) but also to his father Felix Chrispeels who imbued him with a love for cultivating the soil and caring for plants. David Sadava was inspired by his university teachers of plant biology, Margaret McCully and Frank Wightman.

We are especially thankful for the professionalism of the staff of Jones and Bartlett, including Louis Bruno, Anne Spencer, Kristin Ohlin, Stephen Weaver, and Dean DeChambeau. We hope that this book will help our fellow teachers design courses that will inspire a new generation of students to enter the basic and applied sciences that help feed the world.

Maarten Chrispeels
La Jolla, California

David Sadava
Claremont, California
CONTRIBUTORS

John H. Benedict, Ph.D.
Professor Emeritus
Department of Entomology
Texas A&M University System and Texas Agricultural Experiment Station
Corpus Christi, Texas
Chapter 16

Andrew F. Bent, Ph.D.
Associate Professor of Plant Pathology
Department of Plant Pathology
University of Wisconsin–Madison
Madison, Wisconsin
Chapter 15

J. Derek Bewley, Ph.D.
Professor of Botany
Department of Botany
University of Guelph
Guelph, Ontario, Canada
Chapter 9

Kent J. Bradford, Ph.D.
Professor and Director of Seed
Biotechnology Center
Department of Vegetable Crops
University of California, Davis
Davis, California
Chapter 9

Maarten J. Chrispeels, Ph.D.
Professor of Biology
Division of Biology
University of California, San Diego
La Jolla, California
Chapters 3, 7, 8, 12, 19

Marc J. Cohen, Ph.D.
Assistant to Director General; Secretary,
Board of Trustees
International Food Policy Research Institute
Washington, DC
Chapter 4

Grant R. Cramer, Ph.D.
Associate Professor of Biochemistry
Department of Biochemistry
University of Nevada, Reno
Reno, Nevada
Chapter 11

Paul Gepts, Ph.D.
Professor of Agronomy
Department of Agronomy and Range Science
University of California, Davis
Davis, California
Chapter 13

T. J. Higgins, Ph.D.
Chief Research Scientist and Assistant Chief
Division of Plant Industry
Commonwealth Scientific and Industrial Research Organization
Canberra, Australia
Chapter 7

Stephen P. Long, Ph.D.
Professor of Crop Sciences
Department of Plant Biology
University of Illinois
Urbana, Illinois
Chapter 10

Jesse Machuka, Ph.D.
Biotechnologist/Molecular Biologist
International Institute of Tropical Agriculture
Ibadan, Nigeria
Chapter 5

T. Erik Mirkov, Ph.D.
Professor of Plant Virology
Department of Plant Pathology and Microbiology
The Texas A&M University Agricultural Experiment Station
Weslaco, TX 78596
Chapter 6

John B. Ohlrogge, Ph.D.
Professor of Plant Biology
Department of Plant Biology
Michigan State University
East Lansing, Michigan
Chapter 19

Donald R. Ort, Ph.D.
USDA/ARS Professor of Plant Biology
Department of Plant Biology
University of Illinois
Urbana, Illinois
Chapter 10

Philip G. Pardey, Ph.D.
Professor of Science and Technology
Department of Applied Economics
University of Minnesota
St. Paul, Minnesota
Chapter 2

Todd W. Pfeiffer, Ph.D.
Professor of Plant Breeding/Genetics
Department of Agronomy
University of Kentucky
Lexington, Kentucky
Chapter 14

Idupulapati M. Rao, Ph.D.
Plant Nutritionist
International Center for Tropical Agriculture
Cali, Colombia, South America
Chapter 11

David E. Sadava, Ph.D.
Professor of Biology
Department of Biology
The Claremont Colleges
Claremont, California
Chapters 1, 3

Jonathan M. Shaver, Ph.D.
Assistant Professor of Plant and Soil Sciences
Department of Plant and Soil Sciences
Oklahoma State University
Stillwater, Oklahoma
Chapter 18

C. Neal Stewart, Jr., Ph.D.
Professor of Plant Sciences
Department of Plant Sciences and Landscape Systems
University of Tennessee
Knoxville, Tennessee
Chapter 20

Patrick J. Tranel, Ph.D.
Assistant Professor of Molecular Weed Science
Department of Crop Sciences
University of Illinois
Urbana, Illinois
Chapter 17

Sarah K. Wheaton
Graduate School of Oceanography
University of Rhode Island
Narragansett, Rhode Island
Chapter 20

Brian D. Wright, Ph.D.
Professor of Agricultural and Resource Economics
Department of Agricultural and Resource Economics
University of California, Berkeley
Berkeley, California
Chapter 2
Plants, Genes, and Crop Biotechnology