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Chapter 7
The Solut ion of 
Nonl inear Equat ions

I n Chapter 3 we identified the solution of a system of linear equations
as one of the fundamental problems in numerical analysis. It is also
one of the easiest, in the sense that there are efficient algorithms for
it, and that it is relatively straightforward to evaluate the results

produced by them. Nonlinear equations, however, are more difficult, even
when the number of unknowns is small.

Example 7.1 The following is an abstracted and greatly simplified version of a missile-
intercept problem.

The movement of an object O1 in the xy plane is described by the
parameterized equations

x1(t) = t,

y1(t) = 1 − e−t.
(7.1)

A second object O2 moves according to the equations

x2(t) = 1 − cos(α)t,

y2(t) = sin(α)t − 0.1t2.
(7.2)
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Figure 7.1

The missile-
intercept problem.

y

x

α

O1

Q2

Is it possible to choose a value for α so that both objects will be in the same
place at some t? (See Figure 7.1.)

When we set the x and y coordinates equal, we get the system

t = 1 − cos(α)t,

1 − e−t = sin(α)t − 0.1t2,
(7.3)

that needs to be solved for the unknowns α and t. If real values exist for
these unknowns that satisfy the two equations, both objects will be in the
same place at some value of t. But even though the problem is a rather
simple one that yields a small system, there is no obvious way to get the
answers, or even to see if there is a solution.

The numerical solution of a system of nonlinear equations is one of
the more challenging tasks in numerical analysis and, as we will see, no
completely satisfactory method exists for it. To understand the difficulties,
we start with what at first seems to be a rather easy problem, the solution
of a single equation in one variable

f(x) = 0. (7.4)

The values of x that satisfy this equation are called the zeros or roots of
the function f . In what is to follow we will assume that f is continuous and
sufficiently differentiable where needed.

7.1 Some Simple Root-Finding Methods

To find the roots of a function of one variable is straightforward enough—
just plot the function and see where it crosses the x-axis. The simplest
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Figure 7.2

The bisection
method. After
three steps the root
is known to lie in
the interval
[x3, x4].

x0 x3

x4 x2 x1
x

f (x)

methods are in fact little more than that and only carry out this suggestion
in a systematic and efficient way. Relying on the intuitive insight of the
graph of the function f , we can discover many different and apparently
viable methods for finding the roots of a function of one variable.

Suppose we have two values, x0 and x1, such that f(x0) and f(x1) have
opposite signs. Then, because it is assumed that f is continuous, we know
that there is a root somewhere in the interval [x0, x1]. To localize it, we
take the midpoint x2 of this interval and compute f(x2). Depending on the
sign of f(x2), we can then place the root in one of the two intervals [x0, x2]
or [x2, x1]. We can repeat this procedure until the region in which the root
is known to be located is sufficiently small (Figure 7.2). The algorithm is
known as the bisection method.

The bisection method is very simple and intuitive, but has all the major
characteristics of other root-finding methods. We start with an initial guess
for the root and carry out some computations. Based on these computations
we then choose a new and, we hope, better approximation of the solution.
The term iteration is used for this repetition. In general, an iteration pro-
duces a sequence of approximate solutions; we will denote these iterates by
x[0], x[1], x[2], . . . . The difference between the various root-finding methods
lies in what is computed at each step and how the next iterate is chosen.

Suppose we have two iterates x[0] and x[1] that enclose the root. We
can then approximate f(x) by a straight line in the interval and find the
place where this line cuts the x-axis (Figure 7.3). We take this as the new
iterate

x[2] = x[1] − (x[1] − x[0])f(x[1])
f(x[1]) − f(x[0])

. (7.5)

When this process is repeated, we have to decide which of the three
points x[0], x[1], or x[2], to select for starting the next iteration. There are
two plausible choices. In the first, we retain the last iterate and one point
from the previous ones so that the two new points enclose the solution
(Figure 7.4). This is the method of false position.
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Figure 7.3

Approximating a
root by linear
interpolation.

x[0]x[2]x[1]

f (x)

x

Figure 7.4

The method of false
position. After the
second iteration,
the root is known
to lie in the interval
(x[3], x[0]). x[0]x[2] x[3]x[1]

f (x)

x

The second choice is to retain the last two iterates, regardless of whether
or not they enclose the solution. The successive iterates are then simply
computed by

x[i+1] = x[i] − (x[i] − x[i−1])f(x[i])
f(x[i]) − f(x[i−1])

. (7.6)

This is the secant method. Figure 7.5 illustrates how the secant method
works and shows the difference between it and the method of false position.
From this example we can see that now the successive iterates are no longer
guaranteed to enclose the root.

Example 7.2 The function

f(x) = x2ex − 1

has a root in the interval [0, 1] since f(0)f(1) < 0. The results from the
false position and secant methods, both started with x[0] = 0 and x[1] = 1,
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Figure 7.5

The secant method.

x[3]

x[0]x[2]x[1]

f (x)

x

Table 7.1

Comparison of the
false position and
secant methods.

Iterates False position Secant

x[2] 0.3679 0.3679

x[3] 0.5695 0.5695

x[4] 0.6551 0.7974

x[5] 0.6868 0.6855

x[6] 0.6978 0.7012

x[7] 0.7016 0.7035

are shown in Table 7.1. It appears from these results that the secant method
gives the correct result x = 0.7035 a little more quickly.

A popular iteration method can be motivated by Taylor’s theorem.
Suppose that x∗ is a root of f . Then for any x near x∗,

f(x∗) = f(x) + (x∗ − x)f ′(x) +
(x∗ − x)2

2
f ′′(x) + . . .

= 0.

Neglecting the second order term on the right, we get

x∗ ∼= x − f(x)
f ′(x)

.

While this expression does not give the exact value of the root, it promises
to give a good approximation to it. This suggests the iteration

x[i+1] = x[i] − f(x[i])
f ′(x[i])

, (7.7)
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Figure 7.6

Two iterations of
Newton’s method.

x[0]x[1]

x[2]

f (x)

x

Table 7.2

Results for
Newton’s method.

Iterates Newton

x[0] 0.3679

x[1] 1.0071

x[2] 0.7928

x[3] 0.7133

x[4] 0.7036

x[6] 0.7035

starting with some initial guess x[0] (Figure 7.6). The process is called
Newton’s method.

Example 7.3 The equation in Example 7.2 was solved by Newton’s method, with the
starting guess x[0] = 0.3679. Successive iterates are shown in Table 7.2.
The results, though somewhat erratic in the beginning, give the root with
four-digit accuracy quickly.

The false position and secant methods are both based on linear inter-
polation on two iterates. If we have three iterates, we can think of approx-
imating the function by interpolating with a second degree polynomial and
solving the approximating quadratic equation to get an approximation to
the root (Figure 7.7).

If we have three points x0, x1, x2 with the corresponding function
values f(x0), f(x1), f(x2), we can use divided differences to find the second
degree interpolating polynomial. From (4.12), with an interchange of x0 and
x2, this is

p2(x) = f(x2) + (x − x2)f [x2, x1] + (x − x2)(x − x1)f [x2, x1, x0].
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Figure 7.7

Approximating a
root with quadratic
interpolation.

x0 x1 x3 x2

approximating parabola

f (x)

If we write this in the form

p2(x) = a(x − x2)2 + b(x − x2) + c,

then

a = f [x2, x1, x0],
b = f [x2, x1] + (x2 − x1)f [x2, x1, x0],
c = f(x2).

The equation

p2(x) = 0

has two solutions

x = x2 +
−b ±

√
b2 − 4ac

2a
.

Of these two we normally take the closest to x2 (Figure 7.7), which we can
write as

x3 = x2 +
−b + sign(b)

√
b2 − 4ac

2a
.

Since the numerator may involve cancellation of two nearly equal terms, we
prefer the more stable expression

x3 = x2 −
2c

b + sign(b)
√

b2 − 4ac
. (7.8)

As with the linear interpolation method, we have a choice in what points to
retain when we go from one iterate to the next. If the initial three points
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bracket the solution, we can arrange it so that the next three points do so
as well, and we get an iteration that always encloses the root. This has
obvious advantages, but as with the method of false position, it can affect
the speed with which the accuracy of the root improves. The alternative
is to retain always the latest three iterates, an option known as Muller’s
method.

Obviously one can use even more points and higher degree interpolating
polynomials. But this is of little use because closed form solutions for the
roots of polynomials of degree higher than two are either very cumbersome
or not known. Furthermore, as we will discuss in the next section, Muller’s
method is only slightly better than the secant method so little further im-
provement can be expected.

EXERCISES

1. How many iterations of bisection are needed in Example 7.2 to get 4-digit
accuracy?

2. Use the bisection method to find a root of f(x) = 1 − 2ex to two significant
digits.

3. Use Newton’s method to find the root in Exercise 2 to six significant digits.

4. Give a graphical explanation for the irregularity of the early iterates in the
secant and Newton’s methods observed in Examples 7.2 and 7.3.

5. Consider the following suggestion: We can modify the bisection method to
get a trisection method by computing the value of f at the one-third and
two-thirds points of the interval, then taking the smallest interval over which
there is a sign change. This will reduce the interval in which the root is known
to be located by a factor three in each step and so give the root more quickly.
Is there any merit to this suggestion?

6. Suppose that a computer program claims that the root it produced has an
accuracy of 10−6. How do you verify this claim?

7. Use Muller’s method to get a rough location of the root of a function f whose
values are tabulated as follows.

x f(x)

0 1.20

0.5 0.65

1.0 −0.50

8. Find the three smallest positive roots of

x − cot(x) = 0

to an accuracy of 10−4.
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9. In the system (7.2), use the first equation to solve for cos(α) in terms of
t. Substitute this into the second equation to get a single equation in the
unknown t. Use the secant method to solve for t and from this get a value
for α.

7.2 Convergence Rates of Root-Finding Methods

To put these preliminary results into perspective, we need to develop a way
of comparing the different methods by how well they work and how quickly
they will give a desired level of accuracy.

Definition 7.1

Let x[0], x[1], . . . be a sequence of iterates produced by some root-finding
method for the equation f(x) = 0. Then we say that the method produces
convergent iterates (or just simply that it is convergent) if there exists an
x∗ such that

lim
i→∞

x[i] = x∗, (7.9)

with f(x∗) = 0. If a method is convergent and there exists a constant c
such that

|x[i+1] − x∗| ≤ c|x[i] − x∗|k (7.10)

for all i, then the method is said to have iterative order of convergence k.

For a first-order method, convergence can be guaranteed only if c < 1;
for methods of higher order the error in the iterates will decrease as long as
the starting guess x[0] is sufficiently close to the root.

An analysis of the bisection method is elementary. At each step, the
interval in which the root and the iterate are located is halved, so we know
that the method converges and the error is reduced by about one-half at
each step. The bisection method is therefore a first-order method. To reduce
the interval to a size ε, and thus guarantee the root to this accuracy, we
must repeat the bisection process k times such that

2−k|x[0] − x[1]| ≤ ε,

or

k ≥ log2

|x[0] − x[1]|
ε

.
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If the original interval is of order unity, it will take about 50 bisections to
reduce the error to 10−15.

To see how Newton’s method works, let us examine the error in succes-
sive iterations,

εi = x∗ − x[i].

From (7.6), we get that

x∗ − x[i+1] = x∗ − x[i] +
f(x[i]) − f(x∗)

f ′(x[i])
,

and expanding the last term on the right by Taylor’s theorem,

x∗ − x[i+1] = x∗ − x[i] +
(x[i] − x∗)f ′(x[i])

f ′(x[i])
+

(x[i] − x∗)2f ′′(x[i])
2f ′(x[i])

+ . . .

After canceling terms, this gives that, approximately,

εi+1
∼= cε2

i , (7.11)

where c = f ′′(x[i])/2f ′(x[i]). If c is of order unity, then the error is roughly
squared on each iteration; to reduce it from 0.5 to 10−15 takes about 6 or 7
iterations. This is potentially much faster than the bisection method.

This discussion suggests that Newton’s method has second-order con-
vergence, but the informality of the arguments does not quite prove this. To
produce a rigorous proof is a little involved and is of no importance here. All
we need to remember is the somewhat vague, but nevertheless informative
statement that Newton’s method has iterative order of convergence two,
provided the starting value is sufficiently close to a zero. Arguments can
also be made to show that the secant method has an order of convergence
of about 1.62 and Muller’s method an order approximately 1.84. While
this makes Muller’s method faster in principle, the improvement is not very
great. This often makes the simplicity of the secant method preferable. The
method of false position, on the other hand, has order of convergence one
and can be quite slow.

The arguments for establishing the convergence rates for the secant
method and for Muller’s method are quite technical and we need not pursue
them here. A simple example will demonstrate the rate quite nicely. If a
method has order of convergence k, then

εi+1
∼= cεk

i .

A little bit of algebra shows that

k ∼=
log εi+1 − log εi

log εi − log εi−1
. (7.12)
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Table 7.3

Estimation of the
order of conver-
gence for Newton’s
method using
(7.12).

Iterates Errors k

x[0] 1.315 × 100 - -

x[1] 8.282 × 10−1 - -

x[2] 3.836 × 10−1 1.66

x[3] 7.532 × 10−2 2.12

x[4] 1.140 × 10−3 2.57

x[5] 1.001 × 10−7 2.23

x[6] 7.772 × 10−16 2.00

For examples with known roots, the quantity on the right can be computed
to estimate the convergence rate.

Example 7.4 The function

f(x) = ex2 − 5
e2x

has a known positive root x∗ =
√

1 + loge(5)− 1. Using Newton’s method,
with the starting guess x[0] = −0.7, errors in successive iterates and the
estimates for the order of convergence k are shown in Table 7.3.

It is possible to construct methods that have iterative order larger than
two, but the derivations get quite complicated. In any case, second-order
methods converge so quickly that higher order methods are rarely needed.

EXERCISES

1. Suppose that f has a root x∗ in some interval [a, b] and that f ′(x) > 0 and
f ′′(x) > 0 in this interval. If x[0] > x∗, show that convergence of Newton’s
method is monotone toward the root; that is

x[0] > x[1] > x[2] > . . . .

2. Describe what happens with the method of false position under the conditions
of Exercise 1.

3. Give a rough estimate of how many iterations of the secant method will be
needed to reduce the error from 0.5 to about 10−15.

4. Give an estimate of how many iterations with Muller’s method are needed
under the conditions of the previous exercise.
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5. Roughly how many iterations would you expect a third-order method to take
to reduce the error from 0.5 to 10−15? Compare this with the number of
iterations from Newton’s method.

6. Draw a graph to argue that the false position method will not work very well
for finding the root of

f(x) = e−20|x| − 10−4.

7. A common use of Newton’s method is in algorithms for computing the square
root of a positive number a. Applying the method to the equation

x2 − a = 0,

show that the iterates are given by

x[i+1] =
1

2

(
x[i] +

a

x[i]

)
.

Prove that, for any positive x[0], this sequence converges to
√

a.

8. Use Newton’s method to design an algorithm to compute 3
√

a for positive a.
Verify the second-order convergence of the algorithm.

9. Use the equation in Example 7.4 to investigate the convergence rate for
Muller’s method.

7.3 Difficulties with Root-Finding

Most root-finding methods for a single equation are intuitive and easy to
apply, but they are all based on the assumption that the function whose
roots are to be found is well behaved in some sense. When this is not the
case, the computations can become complicated. For example, both the
bisection method and the method of false position require that we start
with two guesses that bracket a root; that is, that

f(x[0])f(x[1]) ≤ 0,

while for Newton’s method we need a good initial guess for the root. We can
try to find suitable starting points by a sampling of the function at various
points, but there is a price to pay. If we sample at widely spaced points, we
may miss a root; if our spacing is very close we will have to expend a great
deal of work. But even with very close sampling we may miss some roots.
A situation like that shown in Figure 7.8 defeats many algorithms.

This situation illustrates how difficult it is to construct an automatic
root-finder. Even the most sophisticated algorithm will occasionally miss
if it is used without an analysis that tells something about the structure
of the function. This situation is not unique to root-finding, but applies
to many other numerical algorithms. Whatever method we choose, and no
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Figure 7.8

A case when two
roots can be missed
entirely by
sampling.

f (x)

Uniform sample
spacing

Figure 7.9

Two roots of higher
multiplicity.

Double root

Triple root
x

f (x)

matter how carefully we implement it, there will always be some problems
for which the method fails.

Newton’s method, in addition to requiring a good initial approximation,
also requires that f ′(x[i]) does not vanish. This creates a problem for the
situation shown in Figure 7.9, where f ′(x∗) = 0. Such roots require special
attention.

Definition 7.2

A root x∗ of f is said to have a multiplicity p if

f(x∗) = f ′(x∗) = . . . = f (p−1)(x∗) = 0,

f (p)(x∗) 	= 0.

A root of multiplicity one is called a simple root, a root of multiplicity two
is a double root, and so on.

It can be shown that Newton’s method still converges to roots of higher
multiplicity, but the order of convergence is reduced. Methods like bisection
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are not directly affected, but cannot get started for roots of even multiplicity.
In either case, there is a problem of the accuracy with which a root can be
obtained. To see this, consider what happens when we try to find a root
on the computer. Because x∗ is not necessarily a computer-representable
number and the function f usually cannot be computed exactly, we can
find only an approximation to the root. Even at the closest approximation
to the root the value of f will not be zero. All we can say is that at the
root, the value of f should be zero within the computational accuracy. If ε
represents all the computational error, we can only agree that as long as

|f(x̂)| ≤ ε (7.13)

then x̂ is an acceptable approximation to the root. Usually, there is a region
around x∗ where (7.13) is satisfied and the width of this region defines a
limit on the accuracy with which one can approximate the root. From
Taylor’s theorem

f(x̂) = f(x∗) + (x̂ − x∗)f ′(x∗) +
(x̂ − x∗)2

2
f ′′(x∗) + . . . .

If x∗ is a simple root, then it follows that, sufficiently close to the root,

|x̂ − x∗| ≤ ε

|f ′(x∗)| ,

so that the accuracy with which a simple root can be located is O(ε). This
makes finding a simple root a well-conditioned problem, unless f ′(x∗) is
very close to zero.

When x∗ is a zero of multiplicity two, then f ′(x∗) = 0 and

|x̂ − x∗| ≤
√

2ε

|f ′′(x∗)| ,

so we can guarantee only an O(
√

ε) accuracy. In a similar way, we can show
that if a root is of multiplicity p, then we can get its location only to an
accuracy O

(
ε1/p

)
. Finding roots of high multiplicity is an ill-conditioned

problem.

EXERCISES

1. Show that the accuracy with which a root of multiplicity p can be found is
O(ε1/p).

2. Show that if f has a simple root at x∗ then f2 has a double root at that
point.

3. Draw a graph that illustrates why Newton’s method converges slowly to a
double root.
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4. Repeat the analysis leading to (7.11) to lend substance to the conjecture that
Newton’s method converges linearly to a double root.

5. Do you think that Newton’s method tends to converge slower near a triple
root than near a double root?

6. How do you think the false position method will behave near a triple root?

7. If we know that f has a root x∗ of multiplicity p, then the following modifi-
cation of Newton’s method (7.6) will still have order two convergence:

x[i+1] = x[i] − p
f(x[i])

f ′(x[i])
.

Experimentally examine the claim that this modification of Newton’s method
has order two convergence by applying the function

f(x) = (x − 1)3 sin(x)

with initial iterate x[0] = 2.

7.4 The Solution of Simultaneous Equations
by Newton’s Method

Not all methods for a single equation carry over to systems of equations. For
example, it is hard to see how one can adapt the bisection method to more
than one equation. The one-dimensional method that most easily extends
to several dimensions is Newton’s method.

We consider the solution of a system of nonlinear equations

f1(x1, x2, . . . , xn) = 0,

f2(x1, x2, . . . , xn) = 0,

...
fn(x1, x2, . . . , xn) = 0,

(7.14)

which we write in vector notation as

F(x) = 0. (7.15)

We will assume that the number of unknowns and the number of equations
are the same.

Using a multi-dimensional Taylor expansion, one can show that in n
dimensions (7.7) becomes

x[i+1] = x[i] − J−1(x[i])F(x[i]), (7.16)
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where J is the Jacobian

J(z) =




∂ f1

∂ x1

∂ f1

∂ x2
· · · ∂ f1

∂ xn

∂ f2

∂ x1

∂ f2

∂ x2
· · · ∂ f2

∂ xn

...
...

...

∂ fn

∂ x1

∂ fn

∂ x2
· · · ∂ fn

∂ xn




x=z .

For practical computations, we do not usually use (7.16) but prefer the
form

x[i+1] = x[i] + ∆[i], (7.17)

where ∆[i] is the solution of

J(x[i])∆[i] = −F(x[i]). (7.18)

Each step in the multi-dimensional Newton’s method involves the solu-
tion of an n-dimensional linear system. In addition, in each step we have
to evaluate the n2 elements of the Jacobian. It can be shown that, as in
the one-dimensional case, the order of convergence of the multi-dimensional
Newton’s method is two, provided we have a good starting guess.

Example 7.5 Consider the solution of Example 7.1. Setting the x and y coordinates equal
to each other, we get a system in two unknowns

1 − cos(α)t − t = 0,

sin(α)t − 0.1t2 − 1 + e−t = 0.

Using (7.16) with initial guess (t, α) = (1, 1), Newton’s method converges
to (0.6278603030418165, 0.9363756944918756) in four iterations. This can
be shown to agree with the true solution to thirteen significant digits. The
2-norm of the error in successive iterates and the estimates for the order of
convergence k are shown in Table 7.4.

But things do not always work as smoothly as this. Even for some
small, innocent-looking systems we may get into some difficulties.

Example 7.6 For the system

x2
1 + 2 sin(x2) + x3 = 0,

cos(x2) − x3 = 2,

x2
1 + x2

2 + x2
3 = 2,
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Table 7.4

Estimate of order
of convergence for
Newton’s method
in calculating the
solution of Example
7.1 using (7.12).

Iterates Errors k

0 3.78 × 10−1 - -

1 4.55 × 10−2 - -

2 6.77 × 10−4 1.99

3 3.90 × 10−7 1.77

4 8.98 × 10−14 2.05

the Jacobian is

J =




2x1 2 cos(x2) 1

0 − sin(x2) −1

2x1 2x2 2x3


 .

When started with x[0] = (1.1, 0.1, −0.9) the iterates produced by Newton’s
method were

x[1] = (1.021674086, −0.022927241, −0.992723588),

x[2] = (1.000739746, −0.000641096, −0.999751903),

x[3] = (1.000000714, −0.000000544, −0.999999795),

and the next iterate agrees with the root x∗ = (1, 0, −1) to more than ten
significant digits.

However, with the starting value x[0] = (1, 1, 0) we obtained the fol-
lowing iterates

x[1] = (0.3053, 1.6947, −2.0443),

x[2] = (−0.9085, 1.0599, −1.4936),

x[3] = (−0.3404, 0.8060, −1.2896).

No clear pattern has emerged in these first approximations and no conver-
gence was observed after 20 iterations.

This example is typical of Newton’s method and illustrates its main
features. When the method works, it works exceedingly well. The second
order of convergence allows us to get very accurate results with just a few
iterations. On the other hand, unless we have a good starting value, the
whole process may fail spectacularly and we may do a lot of work without
achieving anything.

Newton’s method has been studied extensively because theoretically it
is very attractive. It has second-order convergence and one can establish
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theorems that tell us exactly how close the first guess has to be to assure
convergence. From a practical point of view, there are some immediate
difficulties. First, we have to get the Jacobian which requires explicit ex-
pressions for n2 partial derivatives. If this proves too cumbersome, we can
use numerical differentiation but, as suggested in Chapter 6, this will lead
to some loss of accuracy. Also, each step requires the solution of a linear
system and this can be expensive. There are ways in which some work can
be saved, say, by using the same Jacobian for a few steps before recomputing
it. This slows the convergence but can improve the overall efficiency. The
main difficulty, though, with Newton’s method is that it requires a good
starting guess. When we do not have a good starting vector, the iterates
can behave quite erratically and wander around in n-space for a long time.
This problem can be alleviated by monitoring the iterates and restarting the
computations when it looks like convergence has failed, but on the whole,
there is no entirely satisfactory solution to the starting problem. In some
applications, the physical origin of the system might suggest a good initial
value. In other cases, we may need to solve a sequence of nonlinear prob-
lems that are closely related, so one problem could suggest starting values
for the next. In these situations, Newton’s method can be very effective. In
general, though, locating the solution roughly is much harder than to refine
its accuracy. This is the main stumbling block to the effective solution of
(7.15) by Newton’s method.

EXERCISES
1. Use the Taylor expansion in two dimensions to derive (7.16) for n = 2.

2. Why is x[0] = (0, 0, 0) not a good starting vector for Example 7.6?

3. Investigate whether Example 7.5 has any other solutions.

4. Find all the solutions of the system

x1 + 2x2
2 = 1,

|x1| − x2
2 = 0.

5. What can you expect from Newton’s method near a multiple root?

6. An interesting biological experiment concerns the determination of the maxi-
mum water temperature at which various species of hydra can survive without
shortened life expectancy. The problem can be solved by finding the weighted
least-squares approximation for the model y = a/(x − b)c with the unknown

parameters a, b, and c, using a collection of experimental data. The x refers
to water temperature, and y refers to the average life expectancy at that
temperature. More precisely, a, b, and c are chosen to minimize

n∑
i=1

[
yiwi −

a

(xi − b)c

]2

.
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(a) Show that a, b, c must be a solution of the following nonlinear
system:

a = (

n∑
i=1

yiwi

(xi − b)c
)/(

n∑
i=1

1

(xi − b)2c
),

0 =
n∑

i=1

yiwi

(xi − b)c
.

n∑
i=1

1

(xi − b)2c+1
−

n∑
i=1

yiwi

(xi − b)c+1
.

n∑
i=1

1

(xi − b)2c
,

0 =

n∑
i=1

yiwi

(xi − b)c
.

n∑
i=1

loge(xi − b)

(xi − b)2c

−
n∑

i=1

yiwi loge(xi − b)

(xi − b)c+1
.

n∑
i=1

1

(xi − b)2c
.

(b) Solve the nonlinear system for the species with the following data.
Use the weights wi = loge(yi).

i xi yi

1 30.2 21.6

2 31.2 4.75

3 31.5 3.80

4 31.8 2.40

7. Find a nonzero solution for the following system to an accuracy of at least
10−12, using Newton’s method.

x1 + 10x2 = 0,

x3 −
√

|x4| = 0,

(x2 − 2x3)
2 − 1 = 0,

x1 − x4 = 0.

7.5 The Method of Successive Substitution*

Note one difference between Newton’s method and the secant method: New-
ton’s method obtains the next iterate x[i+1] from x[i] only, while the secant
method needs both x[i] and x[i−1]. We say that Newton’s method is a one-
point iteration, while the secant method is a two-point scheme. The analysis
for one-point methods is straightforward and considerably simpler than the
analysis for multipoint methods.
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We begin by rewriting (7.4) as

x = G(x) (7.19)

in such a way that x is a solution of (7.4) if and only if it satisfies (7.19).
There are many ways such a rearrangement can be done; as we will see,
some are more suitable than others.

Equation (7.19) can be made into a one-point iterative scheme by sub-
stituting x[i] into the right side to compute x[i+1]; that is

x[i+1] = G(x[i]). (7.20)

We start with some x[0] and use (7.20) repeatedly with i = 0, 1, 2, . . . .
This approach is sometimes called the method of successive substitution,
but is actually the general form of any one-point iteration. The obvious
question is what happens as i → ∞.

Let x∗ satisfy equation (7.19). Such a point is called a fixed point of
the equation. Then

x[i+1] − x∗ = G(x[i]) − x∗

= G(x[i]) − G(x∗).

Using a Taylor expansion, we get

x[i+1] − x∗ = G′(x∗)(x[i] − x∗) +
1
2
G′′(x∗)(x[i] − x∗)2 + . . . . (7.21)

If G′(x∗) 	= 0, each iteration multiplies the magnitude of the error roughly
by a factor |G′(x∗)|. The method is therefore of order one and converges if
|G′(x∗)| < 1. If |G′(x∗)| > 1 the iteration may diverge.

Example 7.7 Both equations x = 1− 1
4 sinπx and x = 1− sinπx have a solution x∗ = 1.

In Table 7.5, the results of the first ten iterates for both these equations are
shown, using (7.20) with the initial guess x[0] = 0.9. Clearly the iterations
converge in the second column of Table 7.5, although not very quickly. It is
easy to verify that |G′(x∗)| = π

4 < 1. On the other hand, the third column
in the table reveals a divergent sequence. This is because |G′(x∗)| = π > 1.

Since Newton’s method is a single-point iteration, (7.21) is applicable
with

G(x) = x − f(x)
f ′(x)
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Table 7.5

Iterates for
equations in
Example 7.7.

Iterates x = 1 − 0.25 sinπx x = 1 − sinπx

x[0] 0.9000 0.9000

x[1] 0.9227 0.6910

x[2] 0.9399 0.1747

x[3] 0.9531 0.4784

x[4] 0.9633 0.0023

x[5] 0.9712 0.9928

x[6] 0.9774 0.9773

x[7] 0.9823 0.9288

x[8] 0.9861 0.7782

x[9] 0.9891 0.3582

x[10] 0.9914 0.0976

and

G′(x) =
f(x)f ′′(x)
(f ′(x))2

.

Now G′(x∗) = 0 and the situation is changed. Provided f ′(x∗) 	= 0,

x[i+1] − x∗ =
1
2
G′′(x∗)(x[i] − x∗)2 + . . .

and the magnitude of the error is roughly squared in each iteration; that is,
the method has order of convergence two.

The condition f ′(x∗) 	= 0 means that x∗ is a simple root, so second
order convergence holds only for that case. For roots of higher multiplicity,
we reconsider the analysis. Suppose that f has a root of multiplicity two at
x∗. From Taylor’s theorem we know that

f(x) =
1
2
(x − x∗)2f ′′(x∗) + . . .

f ′(x) = (x − x∗)f ′′(x∗) + . . .

so that

lim
x→x∗

f(x)f ′′(x)
(f ′(x))2

∼=
1
2
.

We expect then that near a double root, Newton’s method will converge
with order one, and that the error will be reduced by a factor of one half
on each iteration.
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It can also be shown (in Exercise 5 at the end of this section) that for
roots of higher multiplicity we still get convergence, but that the rate gets
slower as the multiplicity goes up. For roots of high multiplicity, Newton’s
method becomes quite inefficient.

These arguments can be extended formally to nonlinear systems. Using
vector notation, we write the problem in the form

x = G(x).

Then, starting with some initial guess x[0], we compute successive values by

x[i+1] = G(x[i]). (7.22)

From (7.22), we get

x[i+1] − x[i] = G(x[i]) − G(x[i−1]),

and from the multi-dimensional Taylor’s theorem,

x[i+1] − x[i] = G′(x[i])(x[i] − x[i−1]) + O(||x[i] − x[i−1] ||2),

where G′ is the Jacobian associated with G. If x[i+1] and x[i] are so close
that we can neglect higher order terms,

||x[i+1] − x[i]|| ∼= ||G′(x[i])|| ||x[i] − x[i−1]||. (7.23)

If ||G′(x[i]) || < 1, then the difference between successive iterates will di-
minish, suggesting convergence.

It takes a good bit of work to make this into a precise and provable
result and we will not do this here. The intuitive rule of thumb, which can
be justified by precise arguments, is that if ||G′(x∗)|| < 1, and if the starting
value is close to a root x∗, then the method of successive substitutions will
converge to this root. The order of convergence is one. The inequality
(7.23) also suggests that the error in each iteration is reduced by a factor
of ||G′(x[i])||, so that the smaller this term, the faster the convergence.

The simple form of the method of successive substitution, as illustrated
in Example 7.7, is rarely used for single equations. However, for systems
there are several instances where the approach is useful. For one of them
we need a generalization of (7.22). Suppose that A is a matrix and we want
to solve

Ax = G(x). (7.24)

Then, by essentially the same arguments, we can show that the iterative
process

Ax[i+1] = G(x[i]) (7.25)
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converges to a solution of (7.24), provided that ||A−1|| ||G′(x∗)|| < 1 and
x[0] is sufficiently close to x∗.

Example 7.8 Find a solution of the system

x1 + 3x2 + 0.1x2
3 = 1,

3x1 + x2 + 0.1 sin(x3) = 0,

−0.25x2
1 + 4x2 − x3 = 0.

We first rewrite the system as




1 3 0

3 1 0

0 4 −1







x1

x2

x3


 =




1 − 0.1x2
3

−0.1 sin(x3)

0.25x2
1




and carry out the suggested iteration. As a starting guess, we can take
the solution of the linear system that arises from neglecting all the small
nonlinear terms. The solution of




1 3 0

3 1 0

0 4 −1







x1

x2

x3


 =




1

0

0




is (−0.1250, 0.3750, 1.5000) which we take as x[0]. This gives the iterates

x[1] = (−0.1343, 0.3031, 1.2085),

x[2] = (−0.1418, 0.3319, 1.3232),

x[3] = (−0.1395, 0.3215, 1.2808).

Clearly, the iterations converge, although quite slowly.

The above example works, because the nonlinear part is a small effect
compared to the linear part. This is not uncommon in practice where a
linear model can sometimes be improved by incorporating small nonlinear
perturbations. There are other special instances from partial differential
equations where the form of the equations assures convergence. We will see
some of this in Chapter 13.
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EXERCISES

1. Use the method of successive substitution to find the positive root of

x2 − e0.1x = 0

to three-digit accuracy. Are there any negative roots?

2. Estimate the number of iterations required to compute the solution in Ex-
ample 7.8 to four significant digits.

3. Rewrite the equations in the form (7.22) and iterate to find a solution for

10x2
1 + cos(x2) = 12,

x4
1 + 6x2 = 2,

to three significant digits.

4. Use the method suggested in Example 7.8 to find a solution, accurate to 10−2,
for the system of equations

10x1 + 2x2 + 1
10

x2
3 = 1,

2x1 + 3x2 + x3 = 0,

1
10

x1 + x2 − x3 = 0.

Estimate how many iterations would be required to get an accuracy of 10−6.

5. Show that for f(x) = xn, n > 2, Newton’s method converges for x near zero
with order one. Show that the error is reduced roughly by a factor of n−1

n
in

each iteration.

6. Consider the nonlinear system

3x1 − cos(x2x3) −
1

2
= 0,

x2
1 − 81(x2 + 0.1)2 + sin x3 + 1.06 = 0,

e−x1x2 + 20x3 +
10π − 3

3
= 0.

(a) Show that the system can be changed into the following equivalent
problem

x1 =
1

3
cos(x2x3) +

1

6
,

x2 =
1

9

√
x2

1 + sin x3 + 1.06 − 0.1,

x3 = − 1

20
e−x1x2 − 10π − 3

60
.
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(b) Use the method given by (7.25) to find a solution for the system
in (a), accurate to 10−5.

7.6 Minimization Methods*

A conceptually simple way of solving the multi-dimensional root-finding
problem is by minimization. We construct

Φ(x1, x2, . . . , xn) =
n∑

i=1

f2
i (x1, x2, . . . , xn) (7.26)

and look for a minimum of Φ. Clearly, any solution of (7.15) will be a
minimum of Φ.

Optimization, with the special case of minimization, is an extensive
topic that we consider here only in connection with root-finding. As with
all nonlinear problems, it involves many practical difficulties. The main
obstacle to minimization is the distinction between a local minimum and
a global minimum. A global minimum is the place where the function Φ
takes on its smallest value, while a local minimum is a minimum only in
some neighborhood. In Figure 7.10, we have a function with one global and
several local minima. In minimization it is usually much easier to find a
local minimum than a global one. In root-finding, we unfortunately need
the global minimum and any local minimum, at which Φ is not zero is of
no interest.

To find the minimum of a function, we can take its derivative and then
use root-finding algorithms. But this is of limited use and normally we
approach the problem more directly. For minimization in one variable, we
can use search methods reminiscent of bisection, but now we need three
points at each step. The process is illustrated in Figure 7.11. We take three
points, perhaps equally spaced, and compute the value of Φ. If the minimum
value is at an endpoint, we proceed in the direction of the smallest value until

Figure 7.10

Global and local
minima of a
function. Local minimum

Global minimum

Local minimum

f (x)

x
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Figure 7.11

One-dimensional
minimization.

x[0] x[1] x[2] x[3] x[4]
x

the minimum occurs at the interior point. When this happens, we reduce
the spacing and search near the center, continuing until the minimum is
located with sufficient accuracy. Alternatively, if we have three trial points
we can fit a parabola to these points and find its minimum. This will give
us an approximation which can be improved by further iterations.

The main use of one-dimensional minimization is for the solution of
problems in many dimensions. To find a minimum in several dimensions,
we use an iterative approach in which we choose a direction, perform a
one-dimensional minimization in that direction, then change direction, con-
tinuing until the minimum is found. The point we find is a local minimum,
but because of computational error this minimum may be attainable only
within a certain accuracy. The main difference between minimization algo-
rithms is the choice of the direction in which we look. The process is easily
visualized in two dimensions through contour plots.

In one approach we simply cycle through all the coordinate directions
x1, x2, . . . , xn in some order. This gives the iterates shown in Figure 7.12.

Example 7.9 Find a minimum point of the function

f(x, y) = x2 + y2 − 8x − 10y + e−xy/10 + 41,

using the strategy of search in the coordinate axes directions.
For the lack of any better guess, we start at (0, 0) and take steps of

unit length in the y-direction. After a few steps, we find

f(0, 4) = 18, f(0, 5) = 17, f(0, 6) = 18,

indicating a directional minimum in the interval 4 ≤ y ≤ 6. We fit the three
points with a parabola and find its vertex, which in this case is at y = 5.
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Figure 7.12

Minimization in
direction of the
coordinate axes.

x*

x

y

We now change direction and continue the search. After a few more
computations, we find that

f(3, 5) = 1.2231, f(4, 5) = 0.1353, f(5, 5) = 1.0821,

with a resulting directional minimum at x = 4.0347.
Returning once more to the y-direction, we conduct another search,

now with a smaller step size. We get

f(4.0347, 4.5) = 0.4139, f(4.0347, 5) = 0.1342, f(4.0347, 5.5) = 0.3599.

The computed directional minimum is now at y = 5.0267. Obviously, the
process can be continued to get increasingly better accuracy.

If we stop at this point, the approximation for the minimal point
is (4.0347, 5.0267). This compares well with the more accurate result1

(4.0331, 5.0266).

In another way we proceed along the gradient

∆Φ =




∂ Φ
∂ x1

∂ Φ
∂ x2

...

∂ Φ
∂ xn




.

1This result was produced by the MATLAB function fmins.
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Figure 7.13

Minimization by
steepest descent.

x*

x

y

This is called the steepest descent method because moving along the gradient
reduces Φ locally as rapidly as possible (Figure 7.13).

In a more brute force search we systematically choose a set of points
and use the one where Φ is smallest for the next iteration. If triangles (or
simplexes in more than two dimensions) are used, we can compute the value
of Φ at the corners and at the center. If the minimum occurs at a vertex, we
take this as the new center. We proceed until the center has a smaller value
than all the vertices. When this happens, we start to shrink the triangle
and repeat until the minimum is attained. (Figure 7.14).

There are many other more sophisticated minimization methods that
one can think of and that are sometimes used. But, as in root-finding, there
are always some cases that defeat even the best algorithm.

Minimization looks like a safe road toward solving nonlinear systems,
and this is true to some extent. We do not see the kind of aimless wandering
about that we see in Newton’s method, but a steady progress toward a
minimum. Unfortunately, minimization is not a sure way of getting the
roots either. The most obvious reason is that we may find a local minimum
instead of a global minimum. When this happens, we need to restart to find
another minimum. Whether or not this eventually gives a solution of (7.15)
is not clear; in any case, a lot of searching might have to be done. A second
problem is that at a minimum all derivatives are zero, so it acts somewhat
like a double root. When the minimum is very flat, it can be hard to locate
it with any accuracy.

The simplex search illustrated in Figure 7.14 is easy to visualize, but
not very efficient because each iteration requires n + 1 new values of Φ.
In practice we use more sophisticated strategies that reduce the work con-
siderably. For a simple discussion of this, see the elementary treatment of
Murray [19]. For a more up-to-date and thorough analysis of the methods
and difficulties in optimization, see Dennis and Schnabel [7].



“Linz0
2002/
page 1

✐

✐

✐

✐

✐

✐

✐

✐

Chapter 7 The Solution of Nonlinear Equations 199

Figure 7.14

Minimization using
a simplex.

x*

x

y

EXERCISES

1. Set up the system in Exercise 3, Section 7.5 as a minimization problem of the
form given by (7.26). Plot the contour graph for the function to be minimized.

2. Starting at (0, 0), visually carry out three iterations with the method of
steepest descent for the problem in the previous exercise.

3. Starting at (0, 0), visually carry out three iterations with the descent along
the coordinate axes for the problem in Exercise 1.

4. Elaborate a strategy for using the simplex-searching method for the mini-
mization problem.

5. Assume that for all i, f ′
i(x

∗) �= 0 at the solution x∗ of (7.15). Suppose that
the inherent computational errors are of order O(ε). What is the order of
accuracy with which we can expect to locate the minimum of Φ in (7.26)?

6. Instead of minimizing the Φ in (7.26), we could minimize other functions such
as

Φ(x1, x2, . . . , xn) =

n∑
i=1

|fi(x1, x2, . . . , xn)|.

Do you think that this is a good idea?

7. Set up the system in Example 7.1 as a minimization problem. Then, starting
from (0, 0), carry out four steps of minimization in the direction of the
coordinate axes.

8. Repeat Exercise 7, using four steps with the steepest descent method.



“Linz
2002/
page

✐

✐

✐

✐

✐

✐

✐

✐

200 Exploring Numerical Methods

9. Locate an approximate root of the system

10x + y2 + z2 = 1,

x − 20y + z2 = 2,

x + y + 10z = 3.

Find a good first guess for the solution, then use minimization to improve it.

10. Implement a search procedure for finding the minimum of a function of n
variables, analogous to the method illustrated in Figure 7.14, but using the
2n corners of a n-dimensional cube as sample points. Select a set of test
examples to investigate the effectiveness of this algorithm. Does this method
have any advantages or disadvantages compared to fmins?

11. Use the program created in the previous exploration to implement an n-
dimensional root-finder.

7.7 Roots of Polynomials*

In our discussion of Gaussian quadrature, we encountered the need for find-
ing roots of orthogonal polynomials. This is just one of many instances in
numerical analysis where we want algorithms for approximating the roots
of polynomials. These roots can of course be found by the standard meth-
ods, but there are several reasons why we need to pay special attention to
polynomials. On one hand, because of the simple nature of polynomials,
some of the difficulties mentioned in Section 7.3 can be overcome and we can
find generally useful and efficient algorithms. A little bit of analysis often
gives us information that is not always available for general functions. For
example, it is possible to locate roots roughly. If we write the polynomial
equation in the form

xn = −an−1

an
xn−1 − an−2

an
xn−2 − . . . − a0

an
, (7.27)

then it follows easily that, provided |x| ≥ 1,

|x| ≤
n−1∑
i=0

∣∣∣∣ ai

an

∣∣∣∣. (7.28)

This shows that the roots must be confined to some finite part of the com-
plex plane, eliminating much of the need for extensive searching.

Also, once a root, say z, has been found, it can be used to simplify the
finding of the other roots. The polynomial pn(x)/(x − z) has all the roots
of pn(x) except z. This lets us reduce the degree of the polynomial every
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time a root is found. Reduction of the degree, or deflation, can be done by
synthetic division, which can be implemented recursively by

pn(x)
x − z

= bn−1x
n−1 + bn−2x

n−2 + . . . + b0,

where the bi are computed by

bn−1 = an,

bn−i = an−i+1 + zbn−i+1, i = 2, 3, . . . , n.
(7.29)

On the other hand, polynomial root-finding has special needs. In many
applications where polynomials occur we are interested not only in the real
roots, but all the roots in the complex plane. This makes it necessary to
extend root-finding methods to the complex plane.

While some of the methods we have studied can be extended to find
complex roots, it is not always obvious how to do this. An exception is
Muller’s method if we interpret all operations as complex.

Example 7.10 Find all five roots z1, z2, . . . , z5 of the polynomial

p5(x) = x5 − 2x4 − 15
16

x3 +
45
32

x2 + x +
3
16

.

We use equation (7.8) with a stopping criteria |x3 − x2| < 10−8 and initial
points x[0] = −s, x[1] = 0, and x[2] = s. Here s = 5.53125 is the right side
of equation (7.28). Muller’s method then produces the following sequence
that converges to a complex root:

x[3] = −0.00020641435017,

x[4] = −0.00489777122243 + 0.04212476080079 i,

x[5] = −0.01035051976510 + 0.06760459238812 i,

x[6] = −0.31296331041835 + 0.08732823246456 i,

x[7] = −0.34558627541781 + 0.13002738461112 i,

x[8] = −0.36010841180409 + 0.15590007220620 i,

x[9] = −0.35624447399641 + 0.16301914734518 i,

x[10] = −0.35606105305313 + 0.16275737859175 i,

x[11] = −0.35606176171231 + 0.16275838282328 i,

x[12] = −0.35606176174733 + 0.16275838285138 i.
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We take the last iteration as the first root.2 Applying the synthetic division
procedure given in (7.29) with z1 = x[12], the resulting deflated polynomial
is:

p4(x) = x4 + (−2.35606176174733 + 0.16275838285138i)x3

+ (−0.12508678951512 − 0.44142083877717i)x2

+ (1.52263356452234 + 0.13681415794943i)x
+ 0.43558075942153 + 0.19910708652543i.

Repeating the application of Muller’s method, now using initial points
x0 = −s, x1 = 0, and x2 = s, with s = 4.82817669929469, we get the
second root after nine steps at

z2 = 1.97044607872988.

Again the deflated polynomial for z2 is

p3(x) = x3 + (−0.38561568301745 + 0.16275838285138i)x2

+ (−0.88492170001360 − 0.12071422150726i)x
− 0.22105692925244 − 0.10104670646647i.

Continuing in the same fashion, we find

z3 = −0.35606176174735 − 0.16275838285137i.

After deflation, we obtain the quadratic equation:

p2(x) = x2 − 0.74167744476478x − 0.62083872238239.

The two roots for p2(x) can then be obtained by applying the quadratic
formula. They are

z4 = 1.24167744476478

and

z5 = −0.5.

Many special methods have been developed for the effective compu-
tation of the roots of a polynomial, but this is a topic that is technically
difficult and we will not pursue it. Polynomial root finding was a popular
topic in early numerical analysis texts. We refer the interested reader to

2We could use a shortcut here. The theory of polynomials tells us that for polynomials
with real coefficients the roots occur in complex conjugate pairs. Thus, we can claim that
another root is z3 = −0.35606176174735 − 0.16275838285137i.
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Blum[5], Isaacson and Keller[12], or similar books written in the 1960s. We
describe only the companion matrix method, which is easy to understand
and can be used if we need to deal with this special problem.

Consider the polynomial

pn(λ) = λn + an−1λ
n−1 + . . . + a1λ + a0. (7.30)

Then the companion matrix of this polynomial is

C =




0 1 0 · · · 0

0 0 1 0 · · ·

0 0 0 1
...

...
. . . . . . . . . . . . 0

0 · · · 0 0 0 1

−a0 −a1 · · · −an−2 −an−1




. (7.31)

One can then show that the determinant

det(C − λ I) = (−1)npn(λ ), (7.32)

so that the roots of the polynomial in (7.30) are the eigenvalues of its com-
panion matrix. Anticipating results in the next chapter, we know that there
are effective methods to solve this eigenvalue problem. The companion ma-
trix method therefore gives us a convenient way to get the complex roots of
any polynomial.

Now, as we will also see in the next chapter, finding the eigenvalues of
a matrix often involves computing the roots of a polynomial. So it seems
we have cheated, explaining how to find the roots of a polynomial by some
other method that does the same thing! But from a practical viewpoint
this objection has little force. Programs for the solution of the eigenvalue
problem are readily available; these normally use polynomial root-finders
(using methods we have not described here), but this is a matter for the
expert. If, for some reason, we need to find the roots of a polynomial, the
companion matrix is the most convenient way to do so.

Example 7.11 The Legendre polynomial of degree four is

P4(x) =
35x4 − 30x2 + 3

8
.
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Its companion matrix is

C =




0 1 0 0

0 0 1 0

0 0 0 1

−3/35 0 30/35 0


 .

Using the techniques for matrix eigenvalue problems that we will discuss in
the next chapter, we find that the eigenvalues of C are ±0.8611 and ±0.3400.
These are then the roots of P4, which, as expected, are all real. They are
also the quadrature points for a four-point Gauss-Legendre quadrature over
[−1, 1].

EXERCISES

1. By finding bounds on the derivative, show that the polynomial

p3(x) = x3 − 3x2 + 2x − 1

has no real root in [−0.1, 0.1]. Can you extend this result to a larger interval
around x = 0?

2. Prove that the polynomial in Exercise 1 has at least one real root.

3. Let z be a root of the polynomial

pn(x) = anxn + an−1x
n−1 + . . . + a0.

Show that the recursive algorithm suggested in (7.29) produces the polyno-
mial

pn−1(x) =
pn(x)

x − z
.

4. Suppose that in Exercise 3, z is complex; the process then creates a polyno-
mial pn−1 with complex coefficients. How does this affect the usefulness of
deflation in root-finding?

5. Use Newton’s method to find a real root of the polynomial in Exercise 1.
Then use deflation to find the other two roots.

6. Prove (7.32).

7. Use the companion matrix method to check the results of Example 7.10.
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8. Consider the ellipse

x2 + 2(y − 0.1)2 = 1

and the hyperbola

xy =
1

a
.

(a) For a = 10, find all the points at which the ellipse and the hyper-
bola intersect. How can you be sure that you have found all the
intersections?

(b) For what value of a is the positive branch of the hyperbola tangent
to the ellipse?

7.8 Selecting a Root-Finding Method*

Even though there are many methods for solving nonlinear equations, se-
lecting the most suitable algorithm is not a simple matter. To be successful
one has to take into account the specific problem to be solved and choose
or modify the algorithm accordingly. This is especially true for systems of
equations.

For a single equation, one can write fairly general software that deals
effectively with simple roots and functions that do not have the pathological
behavior exhibited in Figure 7.8. Here is some of the reasoning we might use
in designing such software: We assume that to use this software we need only
to supply the name of the function, a rough location of the root of interest,
and an error tolerance, and that the program returns the root to an accuracy
within this tolerance. The first step is to decide on the basic root-finding
method. Most likely, our choice would be between Newton’s method and the
secant method. The method of false position often converges very slowly,
therefore we rule it out for general use. Newton’s method converges faster
than the secant method, but requires the computation of the derivative, so
each step of the secant method takes less work. If the derivative is easy
to evaluate we might use Newton’s method, but in a general program we
cannot assume this. Also, because the error in two applications of the secant
method is reduced roughly by

ei = e1.62
i−1

= (e1.62
i−2 )1.62

= e2.6
i−2,

we see that two iterations of the secant method are better than one appli-
cation of Newton’s method. Since the secant method additionally relieves
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the user of having to supply the derivative, we might go with it. To ensure
convergence of the method, we will design the program so that the iterates
never get outside a region known to contain a root. We can ask that the
user supply two guesses that enclose a root or just one guess of the approxi-
mate solution. In the latter case, we need to include in our algorithm a part
that searches for a sign change in the solution. Once we have a starting
point and an enclosure interval, we apply the secant method repeatedly to
get an acceptable answer. The first problem is that the method may not
converge and give iterates that are outside the enclosure interval. To solve
this problem, we test the prospective iterate and, if it is outside the interval,
apply one bisection. After that, we revert to the secant method. In this
way we always have two points that bracket the solution, and the process
should converge. The next issue is when to terminate the iteration. A sug-
gestion is to compare two successive iterates and stop if they are within the
error tolerance. This, however, does not guarantee the accuracy unless the
two last iterates bracket the solution; what we really want is a bracketing
interval within the tolerance level. To achieve this we might decide to apply
the secant method until two iterates are within half the tolerance, and if
the two last iterates do not bracket the solution, take a small step (say the
difference between the last two iterates) in the direction toward the root
(Figure 7.15). This often resolves the situation, although we still have to
decide what to do if it does not.

A number of widely available programs, including MATLAB’s fzero
have been designed in such a manner. Most of them combine several simple
ideas in a more sophisticated way than what we have described here.

For systems of equations, writing general purpose software is much more
difficult and few attempts have been made. Most software libraries just give
the basic algorithms, Newton’s method, minimization, or other algorithms,
leaving it to the user to find good starting points and to evaluate the results.
If we want to write a more automatic program, we need safeguards against

Figure 7.15

Using the secant
method with
bracketing of the
root.

x[i–1] x[i+1]x[i ]

≤ 

Last trial point

ε
2

f (x)

x
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iterating without any progress. Typically, we can do two things. The first
is to check that we are getting closer to a solution. We can do this by
accepting the next iteration only if

||F(x[i+1])|| < ||F(x[i])||.

If we are using Newton’s method, the second thing we can do is put a limit on
the number of iterations. If the method converges, it does so quite quickly;
a large number of iterations is usually a sign of trouble. For minimization
on the other hand, a fair number of iterations is not unusual. To be effective
for a large number of cases, multi-dimensional root-finders have to have very
sophisticated search strategies. Combining a good strategy with knowledge
of the specific case often gives some solutions of nonlinear systems. But
unless the problem has some illuminating origin, we generally will not know
that we have found all solutions. This is the harder problem for which we
have no good answer.

Actually, the last statement has to be qualified. There are indeed meth-
ods that, in principle, can give us a complete solution to the nonlinear
problem. These methods are based on an interval arithmetic approach,
constructing functions whose domains and ranges are intervals. Interval
programs have been produced that work quite well in three or four dimen-
sions but, unfortunately, they become impractical for larger n. This is still
a matter of research, but for the moment the problem is still not solved.

EXERCISES

1. Under what conditions are two iterates of the secant method on the same
side of the root?

2. Can you think of a situation where the algorithm for solving a single equation
sketched in this section might fail?

3. Is it possible for Newton’s method to be on a convergent track, yet require a
large number of iterations to get high accuracy?
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